• Title/Summary/Keyword: Autoregressive moving-average

Search Result 189, Processing Time 0.021 seconds

Boryeong Dam Inflow Time Series Generation that Reflects Multi-year Drought (다년 가뭄현상을 반영한 보령댐 유입량 시계열 생성에 관한 연구)

  • Kim, Gi Joo;Yoon, Hae Na;Seo, Seung Beom;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.20-20
    • /
    • 2018
  • 다년동안 지속되는 가뭄현상이 빈번하게 발생하고 있지만, 우리나라에서는 지금까지 장기 가뭄보다 단기 가뭄에 초점을 맞춰 연구가 진행되어 왔다. 다년 가뭄을 반영하지 않고 댐의 저수용량을 평가할 경우, 저수용량이 과소평가될 수 있기 때문에 다년간의 가뭄을 반영한 시계열 모형을 통해 다양한 시나리오를 생성하고 분석해야 한다. 본 연구에서는 2015년부터 2017년까지 장기 가뭄이 발생한 보령댐의 1998년-2017년까지의 관측 월평균 유입량 자료를 바탕으로 Autoregressive Moving Average(ARMA)시계열 모형과 Hurst Coefficient를 추가하여 장기지속성을 반영하도록 개발된 시계열 모형인 Autoregressive Fractionally Integreated Moving Average(ARFIMA)를 사용하여 보령댐 500년 기간의 유입량 자료를 생성하였다. Hurst Coefficient는 Hurst가 제안한 Rescaled Range(R/S)방법 외에도 경험식, 이론식을 모두 사용하여 산정하였다. 생성된 자료가 관측 자료의 장기지속성을 잘 반영하는지에 대한 검증을 위해 관측자료의 누적유입량으로부터 선형 이동평균방법을 사용하여 가뭄기준을 산정하고, 생성한 유입량 자료가 장기가뭄을 반영하고 있는지 판단하였다. 그 결과 가뭄의 장기지속성을 잘 반영하는 시계열 모형을 선정하였으며, 향후 연구를 통해 미래 기후변화 시나리오를 반영한 장기가뭄 분석을 수행할 예정이다.

  • PDF

Performance comparison for automatic forecasting functions in R (R에서 자동화 예측 함수에 대한 성능 비교)

  • Oh, Jiu;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.645-655
    • /
    • 2022
  • In this paper, we investigate automatic functions for time series forecasting in R system and compare their performances. For the exponential smoothing models and ARIMA (autoregressive integrated moving average) models, we focus on the representative time series forecasting functions in R: forecast::ets(), forecast::auto.arima(), smooth::es() and smooth::auto.ssarima(). In order to compare their forecast performances, we use M3-Competiti on data consisting of 3,003 time series and adopt 3 accuracy measures. It is confirmed that each of the four automatic forecasting functions has strengths and weaknesses in the flexibility and convenience for time series modeling, forecasting accuracy, and execution time.

A Research of Prediction of Photovoltaic Power using SARIMA Model (SARIMA 모델을 이용한 태양광 발전량 예측연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Hyung-Wook;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.82-91
    • /
    • 2022
  • In this paper, time series prediction method of photovoltaic power is introduced using seasonal autoregressive integrated moving average (SARIMA). In order to obtain the best fitting model by a time series method in the absence of an environmental sensor, this research was used data below 50% of cloud cover. Three samples were extracted by time intervals from the raw data. After that, the best fitting models were derived from mean absolute percentage error (MAPE) with the minimum akaike information criterion (AIC) or beysian information criterion (BIC). They are SARIMA (1,0,0)(0,2,2)14, SARIMA (1,0,0)(0,2,2)28, SARIMA (2,0,3)(1,2,2)55. Generally parameter of model derived from BIC was lower than AIC. SARIMA (2,0,3)(1,2,2)55, unlike other models, was drawn by AIC. And the performance of models obtained by SARIMA was compared. MAPE value was affected by the seasonal period of the sample. It is estimated that long seasonal period samples include atmosphere irregularity. Consequently using 1 hour or 30 minutes interval sample is able to be helpful for prediction accuracy improvement.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

Identification of Noise Covariance by using Innovation Correlation Test (이노베이션 상관관계 테스트를 이용한 잡음인식)

  • Park, Seong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.305-307
    • /
    • 1992
  • This paper presents a technique, which identifies both process noise covariance and sensor noise covariance by using innovation correlation test. A correlation test, which checks whether the square root Kalman filter is workingly optimal or not, is given. The system is stochastic autoregressive moving-average model with auxiliary white noise Input. The linear quadratic Gaussian control is used for minimizing stochastic cost function. This paper indentifies Q, R, and estimates parametric matrics $A(q^{-1}),B(q^{-1}),C(q^{-1})$ by means of extended recursive least squares and model reference control. And The proposed technique has been validated in simulation results on the fourth order system.

  • PDF

Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

  • Kim, Jiyeong;Sohn, Insuk;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.81-96
    • /
    • 2017
  • Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.

Dynamic bivariate correlation methods comparison study in fMRI

  • Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.87-104
    • /
    • 2024
  • Most functional magnetic resonance imaging (fMRI) studies in resting state have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant. However, increased interest has recently been in quantifying possible dynamic changes in FC during fMRI experiments. FC study may provide insight into the fundamental workings of brain networks to brain activity. In this work, we focus on the specific problem of estimating the dynamic behavior of pairwise correlations between time courses extracted from two different brain regions. We compare the sliding-window techniques such as moving average (MA) and exponentially weighted moving average (EWMA), dynamic causality with vector autoregressive (VAR) model, dynamic conditional correlation (DCC) based on volatility, and the proposed alternative methods to use differencing and recursive residuals. We investigate the properties of those techniques in a series of simulation studies. We also provide an application with major depressive disorder (MDD) patient fMRI data to demonstrate studying dynamic correlations.

ARMA Modeling for Nonstationary Time Series Data without Differencing

  • Shin, Dong-Wan;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.371-387
    • /
    • 1999
  • For possibly nonstationary autoregressive moving average, modeling based on the original observations rather than the differenced observations is considered. Under this scheme, sample autocorrelation functions, parameter estimates, model diagnostic statistics, and prediction are all computed from the original data instead of the differenced data. The methods and results established under stationarity of data are shown to naturally extend to the nonstationarity of one autoregressive unit root. The sample ACF and PACF can be used for ARMA order determination. The BIC order is strongly consistent. The parameter estimates are asymptotically normal. The portmanteau statistic has chi-square distribution. The predictor is asymptotically equivalent to that based on the differenced data.

  • PDF

Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

  • Oh, Rosy;Shin, Dong Wan;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.507-518
    • /
    • 2017
  • Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), generalized autoregressive conditional heteroscedasticity (GRACH), and skewed-t error distribution to accommodate important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distribution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.

Recent Review of Nonlinear Conditional Mean and Variance Modeling in Time Series

  • Hwang, S.Y.;Lee, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.783-791
    • /
    • 2004
  • In this paper we review recent developments in nonlinear time series modeling on both conditional mean and conditional variance. Traditional linear model in conditional mean is referred to as ARMA(autoregressive moving average) process investigated by Box and Jenkins(1976). Nonlinear mean models such as threshold, exponential and random coefficient models are reviewed and their characteristics are explained. In terms of conditional variances, ARCH(autoregressive conditional heteroscedasticity) class is considered as typical linear models. As nonlinear variants of ARCH, diverse nonlinear models appearing in recent literature including threshold ARCH, beta-ARCH and Box-Cox ARCH models are remarked. Also, a class of unified nonlinear models are considered and parameter estimation for that class is briefly discussed.

  • PDF