• Title/Summary/Keyword: Autoregressive moving average model

Search Result 151, Processing Time 0.028 seconds

Statistical Inference for Space Time Series Model with Application to Mumps Data

  • Jeong, Ae-Ran;Kim, Sun-Woo;Lee, Sung-Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.475-486
    • /
    • 2006
  • Space time series data can be viewed either as a set of time series collected simultaneously at a number of spatial locations or as sets of spatial data collected at a number of time points. The major purpose of this article is to formulate a class of space time autoregressive moving average (STARMA) model, to discuss some of the their statistical properties such as model identification approaches, some procedure for estimation and the predictions. For illustration, we apply this STARMA model to the mumps data. The data set of mumps cases consists of the number of cases of mumps reported from twelve states monthly over the years 1969-1988.

  • PDF

Models for forecasting food poisoning occurrences (식중독 발생 예측모형)

  • Yeo, In-Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1117-1125
    • /
    • 2012
  • The occurrence of food poisoning is usually modeled by meteorological variables like the temperature and the humidity. In this paper, we investigate the relationship between food poisoning occurrence and climate variables in Korea and compare Poisson regression and autoregressive moving average model to select the forecast model. We confirm that lagged climate variables affect the food poisoning occurrences. However, it turns out that, from the viewpoint of the prediction, the number of previous occurrences is more influential to the current occurrence than meteorological variables and Poisson regression model is less reliable.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

Daily Maximum Electric Load Forecasting for the Next 4 Weeks for Power System Maintenance and Operation (전력계통 유지보수 및 운영을 위한 향후 4주의 일 최대 전력수요예측)

  • Jung, Hyun-Woo;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1497-1502
    • /
    • 2014
  • Electric load forecasting is essential for stable electric power supply, efficient operation and management of power systems, and safe operation of power generation systems. The results are utilized in generator preventive maintenance planning and the systemization of power reserve management. Development and improvement of electric load forecasting model is necessary for power system maintenance and operation. This paper proposes daily maximum electric load forecasting methods for the next 4 weeks with a seasonal autoregressive integrated moving average model and an exponential smoothing model. According to the results of forecasting of daily maximum electric load forecasting for the next 4 weeks of March, April, November 2010~2012 using the constructed forecasting models, the seasonal autoregressive integrated moving average model showed an average error rate of 6,66%, 5.26%, 3.61% respectively and the exponential smoothing model showed an average error rate of 3.82%, 4.07%, 3.59% respectively.

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.927-936
    • /
    • 2017
  • To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

On Stationarity of TARMA(p,q) Process

  • Lee, Oesook;Lee, Mihyun
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.115-125
    • /
    • 2001
  • We consider the threshold autoregressive moving average(TARMA) process and find a sufficient condition for strict stationarity of the proces. Given region for stationarity of TARMA(p,q) model is the same as that of TAR(p) model given by Chan and Tong(1985), which shows that the moving average part of TARMA(p,q) process does not affect the stationarity of the process. We find also a sufficient condition for the existence of kth moments(k$\geq$1) of the process with respect to the stationary distribution.

  • PDF

ON STRICT STATIONARITY OF NONLINEAR ARMA PROCESSES WITH NONLINEAR GARCH INNOVATIONS

  • Lee, O.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.183-200
    • /
    • 2007
  • We consider a nonlinear autoregressive moving average model with nonlinear GARCH errors, and find sufficient conditions for the existence of a strictly stationary solution of three related time series equations. We also consider a geometric ergodicity and functional central limit theorem for a nonlinear autoregressive model with nonlinear ARCH errors. The given model includes broad classes of nonlinear models. New results are obtained, and known results are shown to emerge as special cases.

Computational explosion in the frequency estimation of sinusoidal data

  • Zhang, Kaimeng;Ng, Chi Tim;Na, Myunghwan
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.431-442
    • /
    • 2018
  • This paper highlights the computational explosion issues in the autoregressive moving average approach of frequency estimation of sinusoidal data with a large sample size. A new algorithm is proposed to circumvent the computational explosion difficulty in the conditional least-square estimation method. Notice that sinusoidal pattern can be generated by a non-invertible non-stationary autoregressive moving average (ARMA) model. The computational explosion is shown to be closely related to the non-invertibility of the equivalent ARMA model. Simulation studies illustrate the computational explosion phenomenon and show that the proposed algorithm can efficiently overcome computational explosion difficulty. Real data example of sunspot number is provided to illustrate the application of the proposed algorithm to the time series data exhibiting sinusoidal pattern.

Power Enhanced Design of Robust Control Charts for Autocorrelated Processes : Application on Sensor Data in Semiconductor Manufacturing (검출력 향상된 자기상관 공정용 관리도의 강건 설계 : 반도체 공정설비 센서데이터 응용)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.57-65
    • /
    • 2011
  • Monitoring auto correlated processes is prevalent in recent manufacturing environments. As a proactive control for manufacturing processes is emphasized especially in the semiconductor industry, it is natural to monitor real-time status of equipment through sensor rather than resultant output status of the processes. Equipment's sensor data show various forms of correlation features. Among them, considerable amount of sensor data, statistically autocorrelated, is well represented by Box-Jenkins autoregressive moving average (ARMA) model. In this paper, we present a design method of statistical process control (SPC) used for monitoring processes represented by the ARMA model. The proposed method shows benefits in the power of detecting process changes, and considers robustness to ARMA modeling errors simultaneously. We prove benefits through Monte carlo simulation-based investigations.