• Title/Summary/Keyword: Autoregressive moving average model

Search Result 151, Processing Time 0.04 seconds

A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel (토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구)

  • Jung, Jee-Hee;Kim, Byung-Kyu;Chung, Heeyoung;Kim, Hae-Mahn;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2019
  • This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

Effect of Repeated Public Releases on Cesarean Section Rates

  • Jang, Won-Mo;Eun, Sang-Jun;Lee, Chae-Eun;Kim, Yoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.44 no.1
    • /
    • pp.2-8
    • /
    • 2011
  • Objectives: Public release of and feedback (here after public release) on institutional (clinics and hospitals) cesarean section rates has had the effect of reducing cesarean section rates. However, compared to the isolated intervention, there was scant evidence of the effect of repeated public releases (RPR) on cesarean section rates. The objectives of this study were to evaluate the effect of RPR for reducing cesarean section rates. Methods: From January 2003 to July 2007, the nationwide monthly institutional cesarean section rates data (1 951 303 deliveries at 1194 institutions) were analyzed. We used autoregressive integrated moving average (ARIMA) time-series intervention models to assess the effect of the RPR on cesarean section rates and ordinal logistic regression model to determine the characteristics of the change in cesarean section rates. Results: Among four RPR, we found that only the first one (August 29, 2005) decreased the cesarean section rate (by 0.81 percent) and continued to have an impact period through the last observation in May 2007. Baseline cesarean section rates (OR, 4.7; 95% CI, 3.1 to 7.1) and annual number of deliveries (OR, 2.8; 95% CI, 1.6 to 4.7) of institutions in the upper third of each category at before first intervention had a significant contribution to the decrease of cesarean section rates. Conclusions: We could not found the evidence that RPR has had the significant effect of reducing cesarean section rates. Institutions with upper baseline cesarean section rates and annual number of deliveries were more responsive to RPR.

Trend analysis of the number of nurses and evaluation of nursing staffs expansion policy in Korean hospitals (시계열 자료를 이용한 병원 간호 인력의 변화 추이 및 병원 간호사 확보를 위한 정책의 효과 평가)

  • Park, Bo Hyun;Lee, Tae Jin;Park, Hyeung-Keun;Kim, Chul-Woung;Jeong, Baek-Geun;Lee, Sang-Yi
    • Health Policy and Management
    • /
    • v.22 no.3
    • /
    • pp.297-314
    • /
    • 2012
  • Purpose : The purpose of this study was to analyze the trend of the number of nursing staffs and skill mix and to assess the effectiveness of hospital nurse expansion policies in Korea. Methods : The trend of the number of nursing staffs and skill mix were analyzed using time series data, which composed of yearly series data from 1975 to 2009. The impact of hospital nurse expansion policies was estimated by autoregressive integrated moving average(ARIMA) intervention model. Results : The number of general hospital and hospital nurses per 100 beds was decreased in late 1980s and late 1990s due to rapid growth of beds. As a result of the number of nurse aids per 100 beds decreased, skill mix became high in general hospital but nurse ratio among hospital nursing staffs was about 50%. Expansion of new nurse and revised differentiated inpatient fee were only effective in expansion of hospital nursing staffs. But they had no effect in general hospitals. Conclusion : In Korea, a few policies related to expansion of hospital nurses have an effect on increasing the number of hospital nurse. Nevertheless, level of hospital nursing staffs is inferior to that of general hospital.

Nonlinear Prediction of Nonstationary Signals using Neural Networks (신경망을 이용한 비정적 신호의 비선형 예측)

  • Choi, Han-Go;Lee, Ho-Sub;Kim, Sang-Hee
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.166-174
    • /
    • 1998
  • Neural networks, having highly nonlinear dynamics by virtue of the distributed nonlinearities and the learing ability, have the potential for the adaptive prediction of nonstationary signals. This paper describes the nonlinear prediction of these signals in two ways; using a nonlinear module and the cascade combination of nonlinear and linear modules. Fully-connected recurrent neural networks (RNNs) and a conventional tapped-delay-line (TDL) filter are used as the nonlinear and linear modules respectively. The dynamic behavior of the proposed predictors is demonstrated for chaotic time series adn speech signals. For the relative comparison of prediction performance, the proposed predictors are compared with a conventional ARMA linear prediction model. Experimental results show that the neural networks based adaptive predictor ourperforms the traditional linear scheme significantly. We also find that the cascade combination predictor is well suitable for the prediction of the time series which contain large variations of signal amplitude.

  • PDF

Application of Google Search Queries for Predicting the Unemployment Rate for Koreans in Their 30s and 40s (한국 30~40대 실업률 예측을 위한 구글 검색 정보의 활용)

  • Jung, Jae Un;Hwang, Jinho
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.135-145
    • /
    • 2019
  • Prolonged recession has caused the youth unemployment rate in Korea to remain at a high level of approximately 10% for years. Recently, the number of unemployed Koreans in their 30s and 40s has shown an upward trend. To expand the government's employment promotion and unemployment benefits from youth-centered policies to diverse age groups, including people in their 30s and 40s, prediction models for different age groups are required. Thus, we aimed to develop unemployment prediction models for specific age groups (30s and 40s) using available unemployment rates provided by Statistics Korea and Google search queries related to them. We first estimated multiple linear regressions (Model 1) using seasonal autoregressive integrated moving average approach with relevant unemployment rates. Then, we introduced Google search queries to obtain improved models (Model 2). For both groups, consequently, Model 2 additionally using web queries outperformed Model 1 during training and predictive periods. This result indicates that a web search query is still significant to improve the unemployment predictive models for Koreans. For practical application, this study needs to be furthered but will contribute to obtaining age-wise unemployment predictions.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

The Effect of the Reduction in the Interest Rate Due to COVID-19 on the Transaction Prices and the Rental Prices of the House

  • KIM, Ju-Hwan;LEE, Sang-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.8
    • /
    • pp.31-38
    • /
    • 2020
  • Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.

Analysis and Prediction of Anchovy Fisheries in Korea ARIMA Model and Spectrum Analysis (한국 멸치어업의 어획량 분석과 예측 ARIMA 모델 및 스펙트럼 해석)

  • PARK Hae-Hoon;YOON Gab-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.143-149
    • /
    • 1996
  • Forecasts of the monthly catches of anchovy in Korea were carried out by the seasonal Autoregressive Integrated Moving Average (ARIMA) model and spectral analysis. The seasonal ARIMA model is as follows: $$(1-0.431B)(1-B^{12})Z_t=(1-0.882B^{12})e_t$$ where: $Z_t=value$ at month $t;\;B^{p}$ is a backward shift operator, that is, $B^pZ_t=Z_{t-p};$ and $e_t=error$ term at month t, which is to forecast 24 months ahead the anchovy catches in Korea. The prediction error by the Box-Cox transformation on monthly anchovy catches in Korea was less than that by the logarithmic transformation. The equation of the Box-Cox transformation was $Y'=(Y^{0.58}-1)/0.58$. Forecasts of the monthly anchovy catches for $1991\~1992$, which were compared with the actual catches, had an absolute percentage error (APE) range of $1.0\~63.2\%$. Total observed annual catches in 1991 and 1992 were 170,293 M/T and 168,234 M/T respectively, while the predicted catches were 148,201 M/T and 148,834 M/T $(API\;13.0\%\;and\;11.5\%,\;respectively)$. The spectrum analysis of the monthly catches of anchovy showed some dominant fluctuations in the periods of 2.2, 6.1, 10.2 12.0 and 14.7 months. The spectrum analysis was also useful for selecting the ARIMA model.

  • PDF

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.