This study aims at developing and applying a hybrid model to the wind power prediction (WPP). The hybrid model for a very-short-term WPP (VSTWPP) is achieved through analytical data, multiple linear regressions and least square methods (MLR&LS). The data used in our hybrid model are based on the historical records of wind power from an offshore region. In this model, the WPP is achieved in four steps: 1) transforming historical data into ratios; 2) predicting the wind power using the ratios; 3) predicting rectification ratios by the total wind power; 4) predicting the wind power using the proposed rectification method. The proposed method includes one-step and multi-step predictions. The WPP is tested by applying different models, such as the autoregressive moving average (ARMA), support vector machine (SVM), and artificial neural network (ANN). The results of all these models confirmed the validity of the proposed hybrid model in terms of error as well as its effectiveness. Furthermore, forecasting errors are compared to depict a highly variable WPP, and the correlations between the actual and predicted wind powers are shown. Simulations are carried out to definitely prove the feasibility and excellent performance of the proposed method for the VSTWPP versus that of the SVM, ANN and ARMA models.
This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.
Kim, You Gwang;Park, Eung Sik;Kim, Byung Chun;Lee, Suk Hoon;Lee, Seo Hyun
Journal of Aerospace System Engineering
/
v.14
no.2
/
pp.50-56
/
2020
In this study, we investigated whether long short-term memory (LSTM) can be used in the future to predict F10.7 index data; the F10.7 index is a space environment factor affecting atomic oxygen erosion. Based on this, we compared the prediction performances of LSTM, the Autoregressive integrated moving average (ARIMA) model (which is a traditional statistical prediction model), and the similar pattern searching method used for long-term prediction. The LSTM model yielded superior results compared to the other techniques in the prediction period starting from the max/min points, but presented inferior results in the prediction period including the inflection points. It was found that efficient learning was not achieved, owing to the lack of currently available learning data in the prediction period including the maximum points. To overcome this, we proposed a method to increase the size of the learning samples using the sunspot data and to upgrade the LSTM model.
Proceedings of the Korean Society of Soil and Groundwater Environment Conference
/
2003.09a
/
pp.254-257
/
2003
Statistical analysis is performed to estimate the correlations between geological or geographical factor and groundwater inflow rates in the Seoul subway system. Correlation analysis shows that among several geological and geographical factors fractures and streams have most strong effects on inflow rate into tunnels. In particular, subway line 5∼8 are affected more by these factors than subway line 1∼4. Time series analysis is carried out to forecast groundwater inflow rate. Time series analysis is a useful empirical method for simulation and forecasts in case that physical model can not be applied to. The time series of groundwater inflow rates is calculated using the observation data. Transfer function-noise model is applied with the precipitation data as input variables. For time series analysis, statistical methods are performed to identify proper model and autoregressive-moving average models are applied to evaluation of inflow rate. Each model is identified to satisfy the lowest value of information criteria. Results show that the values by result equations are well fitted with the actual inflow rate values. The selected models could give a good explanation of inflow rates variation into subway tunnels.
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.32
no.3
/
pp.235-240
/
1996
Forecasts of monthly landings of walleye pollock, Theragra chalcogramma, in Korea were carried out by the seasonal Autoregressive Integrated Moving Average(ARlMA) model. The Box - Cox transformation on the walleye pollock catch data handles nonstationary variance. The equation of Box - Cox transformation was Y'=($Y^0.31$_ 1)/0.31. The model identification was determined by minimum AIC(Akaike Information Criteria). And the seasonal ARlMA model is presented (1- O.583B)(1- $B^1$)(l- $B^12$)$Z_t$ =(l- O.912B)(1- O.732$B^12$)et where: $Z_t$=value at month t ; $B^p$ is a backward shift operator, that is, $B^p$$Z_t$=$Z_t$-P; and et= error term at month t, which is to forecast 24 months ahead the walleye pollock landings in Korea. Monthly forecasts of the walleye pollock landings for 1993~ 1994, which were compared with the actual landings, had an absolute percentage error(APE) range of 20.2-226.1 %. Thtal observed annual landings in 1993 and 1994 were 16, 61OM/T and 1O, 748M/T respectively, while the model predicted 10, 7 48M/T and 8, 203M/T(APE 37.0% and 23.7%, respectively).
Journal of the Korean Data and Information Science Society
/
v.20
no.2
/
pp.251-260
/
2009
In this study, we propose a new estimation method based on autocovariance for selecting optimal estimators of the regression coefficients in the simple linear regression model. Although this method does not seem to be intuitively attractive, these estimators are unbiased for the corresponding regression coefficients. When the exploratory variable takes the equally spaced values between 0 and 1, under mild conditions which are satisfied when errors follow an autoregressive moving average model, we show that these estimators have asymptotically the same distributions as the least squares estimators. Additionally, under the same conditions as before, we provide a self-contained proof that these estimators converge in probability to the corresponding regression coefficients.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.10
/
pp.1257-1264
/
2018
This paper proposes Autoregressive Integrated Moving Average (ARIMA)-based forecasting algorithms using meteorological indices to predict seasonal peak load. First of all, this paper observes a seasonal pattern of the peak load that appears intensively in winter and summer, and generates ARIMA models to predict the peak load of summer and winter. In addition, this paper also proposes hybrid ARIMA-based models (ARIMA-Hybrid) using a discomfort index and a sensible temperature to enhance the conventional ARIMA model. To verify the proposed algorithm, both ARIMA and ARIMA-Hybrid models are developed based on peak load data obtained from 2006 to 2015 and their forecasting results are compared by using the peak load in 2016. The simulation result indicates that the proposed ARIMA-Hybrid models shows the relatively improved performance than the conventional ARIMA model.
Kim, Byounggap;Shin, Seung-Yeoub;Kim, Yu Yong;Yum, Sunghyun;Kim, Jinoh
Journal of Biosystems Engineering
/
v.38
no.1
/
pp.9-17
/
2013
Purpose: The goal of this study was to develop a methodology for the demand forecast of tractor, riding type rice transplanter and combine harvester using an ARIMA (autoregressive integrated moving average) model, one of time series analysis methods, and to forecast their demands from 2012 to 2021 in South Korea. Methods: To forecast the demands of three kinds of machines, ARIMA models were constructed by following three stages; identification, estimation and diagnose. Time series used were supply and stock of each machine and the analysis tool was SAS 9.2 for Windows XP. Results: Six final models, supply based ones and stock based ones for each machine, were constructed from 32 tentative models identified by examining the ACF (autocorrelation function) plots and the PACF (partial autocorrelation function) plots. All demand series forecasted by the final models showed increasing trends and fluctuations with two-year period. Conclusions: Some forecast results of this study are not applicable immediately due to periodic fluctuation and large variation. However, it can be advanced by incorporating treatment of outliers or combining with another forecast methods.
Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.14
no.3
/
pp.193-200
/
2004
The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.