• 제목/요약/키워드: Autoregressive moving average model

검색결과 151건 처리시간 0.023초

A Laplacian Autoregressive Moving-Average Time Series Model

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제22권2호
    • /
    • pp.259-269
    • /
    • 1993
  • A moving average model, LMA(q) and an autoregressive-moving average model, NLARMA(p, q), with Laplacian marginal distribution are constructed and their properties are discussed; Their autocorrelation structures are completely analogus to those of Gaussian process and they are partially time reversible in the third order moments. Finally, we study the mixing property of NLARMA process.

  • PDF

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

Hourly Average Wind Speed Simulation and Forecast Based on ARMA Model in Jeju Island, Korea

  • Do, Duy-Phuong N.;Lee, Yeonchan;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1548-1555
    • /
    • 2016
  • This paper presents an application of time series analysis in hourly wind speed simulation and forecast in Jeju Island, Korea. Autoregressive - moving average (ARMA) model, which is well in description of random data characteristics, is used to analyze historical wind speed data (from year of 2010 to 2012). The ARMA model requires stationary variables of data is satisfied by power law transformation and standardization. In this study, the autocorrelation analysis, Bayesian information criterion and general least squares algorithm is implemented to identify and estimate parameters of wind speed model. The ARMA (2,1) models, fitted to the wind speed data, simulate reference year and forecast hourly wind speed in Jeju Island.

Extending the Scope of Automatic Time Series Model Selection: The Package autots for R

  • Jang, Dong-Ik;Oh, Hee-Seok;Kim, Dong-Hoh
    • Communications for Statistical Applications and Methods
    • /
    • 제18권3호
    • /
    • pp.319-331
    • /
    • 2011
  • In this paper, we propose automatic procedures for the model selection of various univariate time series data. Automatic model selection is important, especially in data mining with large number of time series, for example, the number (in thousands) of signals accessing a web server during a specific time period. Several methods have been proposed for automatic model selection of time series. However, most existing methods focus on linear time series models such as exponential smoothing and autoregressive integrated moving average(ARIMA) models. The key feature that distinguishes the proposed procedures from previous approaches is that the former can be used for both linear time series models and nonlinear time series models such as threshold autoregressive(TAR) models and autoregressive moving average-generalized autoregressive conditional heteroscedasticity(ARMA-GARCH) models. The proposed methods select a model from among the various models in the prediction error sense. We also provide an R package autots that implements the proposed automatic model selection procedures. In this paper, we illustrate these algorithms with the artificial and real data, and describe the implementation of the autots package for R.

한국 소비자원 의료분야 처리금액에 대한 시계열 분석 (Time series analysis for the amount of medicine from the Korea Consumer Agency)

  • 강희송;권숙희;이성덕
    • 응용통계연구
    • /
    • 제36권1호
    • /
    • pp.21-32
    • /
    • 2023
  • 한국 소비자원의 의료 분야 처리금액 자료에 대한 시계열 모형을 이용한 실증 분석을 연구하였다. 의료분야 처리금액 시계열 자료는 상담 처리금액, 피해 구제금액, 분쟁 조정 처리금액으로 나뉜 3개 변수를 사용하였고 분석에 사용된 시계열 모형은 ARIMA 모형, 벡터 자기회귀 모형 그리고 전이 함수를 이용한 시계열 모형이다. 이들 중 전이 함수를 이용한 시계열 모형이 단기 예측면에서 가장 우수한 예측력을 보였고 벡터자기회귀 모형도 변수간 영향력과 기간을 파악하는데 유용한 정보를 제공하였다.

Effects of Temporal Aggregation on Hannan-Rissanen Procedure

  • Shin, Dong-Wan;Lee, Jong-Hyup
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.325-340
    • /
    • 1994
  • Effects of temporal aggregation on estimation for ARMA models are studied by investigating the Hannan & Rissanen (1982)'s procedure. The temporal aggregation of autoregressive process has a representation of an autoregressive moving average. The characteristic polynomials associated with autoregressive part and moving average part tend to have roots close to zero or almost identical. This caused a numerical problem in the Hannan & Rissanen procedure for identifying and estimating the temporally aggregated autoregressive model. A Monte-Carlo simulation is conducted to show the effects of temporal aggregation in predicting one period ahead realization.

  • PDF

Network traffic prediction model based on linear and nonlinear model combination

  • Lian Lian
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.461-472
    • /
    • 2024
  • We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.

Forecasting with a combined model of ETS and ARIMA

  • Jiu Oh;Byeongchan Seong
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.143-154
    • /
    • 2024
  • This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.

시계열 자료 분석기법에 의한 풍속 예측 연구 (Estimation Model of Wind speed Based on Time series Analysis)

  • 김건훈;정영석;주영철
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.288-293
    • /
    • 2008
  • A predictive model of wind speed in the wind farm has very important meanings. This paper presents an estimation model of wind speed based on time series analysis using the observed wind data at Hangyeong Wind Farm in Jeju island, and verification of the predictive model. In case of Hangyeong Wind Farm and Haengwon Wind Farm, The ARIMA(Autoregressive Integrated Moving Average) predictive model was appropriate, and the wind speed estimation model was developed by means of parametric estimation using Maximum likelihood Estimation.

  • PDF

실시간 공칭 모델 추정 외란관측기에 관한 실험 연구: 재귀최소자승법 (An Experimental Study on Realtime Estimation of a Nominal Model for a Disturbance Observer: Recursive Least Squares Approach)

  • 이상덕;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.650-655
    • /
    • 2016
  • In this paper, a novel RLS-based DOB (Recursive Least Squares Disturbance Observer) scheme is proposed to improve the performance of DOB for nominal model identification. A nominal model can be generally assumed to be a second order system in the form of a proper transfer function of an ARMA (Autoregressive Moving Average) model. The RLS algorithm for the model identification is proposed in association with DOB. Experimental studies of the balancing control of a one-wheel robot are conducted to demonstrate the feasibility of the proposed method. The performances between the conventional DOB scheme and the proposed scheme are compared.