• 제목/요약/키워드: Autoregressive model (AR)

검색결과 144건 처리시간 0.022초

AR(1)모형에서 자기회귀계수의 다중검정을 위한 베이지안방법 (Bayesian Method for the Multiple Test of an Autoregressive Parameter in Stationary AR(L) Model)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • 제16권1호
    • /
    • pp.141-150
    • /
    • 2003
  • 본 논문은 베이즈인자(Bayes factor)를 이용하여 정상(stationary) AR(1)모형의 자기회귀계수에 대해 다중검정하는 방법을 제시한다. 모수들에 대한 사전분포로는 무정보 사전분포(noninformative prior distribution)를 가정한다. 이러한 경우에 통상적으로 사용되는 베이즈인자를 근사없이 정확히 계산하여 각 모형에 대한 사후확률(posterior probability)을 얻는다. 최종적으로 모의실험 자료 및 실제 자료에 적용하여 이론의 결과가 잘 부합되는지를 검토한다.

2차원 GFRC절삭에서 AR모델링에 관한 연구 (Autoregressive Modeling in Orthogonal Cutting of Glass Fiber Reinforced Composites)

  • Gi Heung Choi
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.88-93
    • /
    • 2001
  • 본 연구에서는 복합소재인 GFRP(Glass Fiber Reinforced Polyester)의 2차원 절삭공정에서 절삭 메커니즘과 소재의 신뢰도 및 안전성과 밀접한 관련이 있는 표면정도를 중심으로 한 공정의 특성화를 시도하고, 주파수 분석에 관하여도 논의한다. 구체적으로는, 공정중 발생하는 절삭력 신호를 AR(Autoregressive) 모델링하여 해석에 사용한다. 특히, 특징추출과정을 통해 AR계수로 이루어진 패턴벡터 중 다양한 절삭 메카니즘에 민감한 계수만 선택할 수 있다. 이들 계수와 절삭 메커니즘과의 실험적 관계를 설정함으로써 섬유경사각(Fiber orientation angle), 절삭 변수 그리고 공구형상이 절삭 메커니즘에 미치는 영향을 평가하였다.

  • PDF

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

AR 모델을 이용한 산사면에서의 지하수위 예측 (Prediction of Groundwater Levels in Hillside Slopes Using the Autoregressive Model)

  • 이인모;박경호;임충모
    • 한국지반공학회지:지반
    • /
    • 제9권3호
    • /
    • pp.67-76
    • /
    • 1993
  • 우리나라는 많은 산막지역으로이루어져 있으며 우기에 많은산사태의 발생으로 인하여 인명과 재산의 손실을 입고 있다. 따라서, 산사태의 발생에 대한 예측 시스템과 위험도 분석 연구가 필요하며, 본 연구의 목적은 관측된 지하수위의 분석을 통하여 산사태 발생을 예측하는 가능성에 대한 것이다. 이를 위하여 AR 모델을 사용하여 모델계수를 일정하게 하는 경우와 변화시키는 경우로 나누어 분석하였다. AR모델계수를 일정하게 하는 경우에는 AR(1), AR(2), AR(3) 모델을 선택하여 각 각의 모델계수를 구하였고, AR모델계수를 변화시키는 경우에는 변형된 AR(1)과 전형적인 AR (2) 모델을 과정 모델로 이용하여 Kalman Filtering 기법에 의하여 모델계수를 구하였다. 그 결과, 모델계수를 변화시키는 실시간 예측 방법이나 AR모델계수가 일정한 경우 모두 산사면 에서의 지하수위를 잘 예측해주며, 지하수위 뿐만아니라 시간별 강우강도를 고려함으로써 더욱 정 확한 예측을 할 수 있을 것으로 사료된다.

  • PDF

Bayesian Approach for Determining the Order p in Autoregressive Models

  • Kim, Chansoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.777-786
    • /
    • 2001
  • The autoregressive models have been used to describe a wade variety of time series. Then the problem of determining the order in the times series model is very important in data analysis. We consider the Bayesian approach for finding the order of autoregressive(AR) error models using the latent variable which is motivated by Tanner and Wong(1987). The latent variables are combined with the coefficient parameters and the sequential steps are proposed to set up the prior of the latent variables. Markov chain Monte Carlo method(Gibbs sampler and Metropolis-Hasting algorithm) is used in order to overcome the difficulties of Bayesian computations. Three examples including AR(3) error model are presented to illustrate our proposed methodology.

  • PDF

Operational modal analysis of reinforced concrete bridges using autoregressive model

  • Park, Kyeongtaek;Kim, Sehwan;Torbol, Marco
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.1017-1030
    • /
    • 2016
  • This study focuses on the system identification of reinforced concrete bridges using vector autoregressive model (VAR). First, the time series output response from a bridge establishes the autoregressive (AR) models. AR models are one of the most accurate methods for stationary time series. Burg's algorithm estimates the autoregressive coefficients (ARCs) at p-lag by reducing the sum of the forward and the backward errors. The computed ARCs are assembled in the state system matrix and the eigen-system realization algorithm (ERA) computes: the eigenvector matrix that contains the vectors of the mode shapes, and the eigenvalue matrix that contains the associated natural frequencies. By taking advantage of the characteristic of the AR model with ERA (ARMERA), civil engineering can address problems related to damage detection. Operational modal analysis using ARMERA is applied to three experiments. One experiment is coupled with an artificial neural network algorithm and it can detect damage locations and extension. The neural network uses a specific number of ARCs as input and multiple submatrix scaling factors of the structural stiffness matrix as output to represent the damage.

벡터자기회귀모형에 의한 금리스프레드의 예측 (Prediction of the interest spread using VAR model)

  • 김준홍;진달래;이지선;김수지;손영숙
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1093-1102
    • /
    • 2012
  • 본 연구에서는 다변량시계열모형인 VAR (vector autoregressive regression)모형에 의하여 금리 스프레드의 시계열예측을 수행하였다. 국내외 거시경제변수들 중에서 교차상관분석 및 그랜져인과 검정을 통하여 상호간에 설명력이 있는 변수들을 추출하여 VAR모형의 시계열변수로 사용하였다. 마지막 12개월의 예측치에 대한 MAPE (mean absolute percentage error)와 RMSE (root mean square error)에 근거하여 모형의 예측력을 단일변량 시계열모형인 AR (autoregressive regression) 모형과 비교하였다.

Synthetic Streamflow Generation Using Autoregressive Modeling in the Upper Nakdong River Basin

  • Rubio, Christabel Jane P.;Oh, Kuk-Ryul;Ryu, Jae-H.;Jeong, Sang-Man
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.81-88
    • /
    • 2010
  • 수자원의 관리 및 계획시 강우, 유출, 유량과 같이 다양한 종류에 의한 수문사상의 합성 및 분석이 요구된다. 다양한 수문사상들은 대부분 추계학적모형에 의한 해석이 필요하며, 이중 적절한 시계열모의결과를 나타낼 수 있는 자기회귀모형 적용을 시도하였다. 본 연구에서는 낙동강 상류에 위치한 안동댐과 임하댐 두 관측소의 월유출량 자료를 이용하여 최적의 자기회귀모형을 검토하였으며, 분석결과 AR(3) 모형의 매개변수($\phi_1$, $\phi_2$, and $\phi_3$)가 가장 적합한 것으로 나타났으며, 다양한 분석 및 평가결과 AR(3)모형이 효과적이고 정확한 것으로 나타났다.

Wind velocity simulation of spatial three-dimensional fields based on autoregressive model

  • Gao, Wei-Cheng;Yu, Yan-Lei
    • Wind and Structures
    • /
    • 제11권3호
    • /
    • pp.241-256
    • /
    • 2008
  • This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of freedom of structures; the improved Gauss formula to calculate the numerical integral equations which integral functions contain oscillating functions; the mixed congruence and central limit theorem of Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank of the AR model. The numerical examples show that all those methods are stable and reliable, which can be used to simulate the wind velocity of all large span structures in civil engineering.

트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구 (Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data)

  • 정철우;김명석
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.1-17
    • /
    • 2013
  • 본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 성과를 비교 평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal autoregressive integrated moving average model)이고 비선형 모형은 인공신경망(artificial neural networks model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.