• Title/Summary/Keyword: Autonomous driving vehicle

Search Result 520, Processing Time 0.024 seconds

Efficiency Low-Power Signal Processing for Multi-Channel LiDAR Sensor-Based Vehicle Detection Platform (멀티채널 LiDAR 센서 기반 차량 검출 플랫폼을 위한 효율적인 저전력 신호처리 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.977-985
    • /
    • 2021
  • The LiDAR sensor is attracting attention as a key sensor for autonomous driving vehicle. LiDAR sensor provides measured three-dimensional lengths within range using LASER. However, as much data is provided to the external system, it is difficult to process such data in an external system or processor of the vehicle. To resolve these issues, we develop integrated processing system for LiDAR sensor. The system is configured that client receives data from LiDAR sensor and processes data, server gathers data from clients and transmits integrated data in real-time. The test was carried out to ensure real-time processing of the system by changing the data acquisition, processing method and process driving method of process. As a result of the experiment, when receiving data from four LiDAR sensors, client and server process was operated using background or multi-core processing, the system response time of each client was about 13.2 ms and the server was about 12.6 ms.

A Study on the Analysis of Bridge Safety by Truck Platooning (차량 군집 주행에 따른 교량 안전성 분석에 관한 연구 )

  • Sangwon Park;Minwoo Chang;Dukgeun Yun;Minhyung No
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.50-57
    • /
    • 2023
  • Autonomous driving technologies have been gradually improved for road traffic owing to the development of artificial intelligence. Since the truck platooning is beneficial in terms of the associated transporting expenses, the Connected-Automated Vehicle technology is rapidly evolving. The structural performance is, however, rarely investigated to capture the effect of truck platooning on civil infrastructures.In this study, the dynamic behavior of bridges under truck platooning was investigated, and the amplification factor of responses was estimated considering several parameters associated with the driving conditions. Artificial intelligence techniques were used to estimate the maximum response of the mid span of a bridge as the platooning vehicles passing, and the importance of the parameters was evaluated. The most suitable algorithm was selected by evaluating the consistency of the estimated displacement.

Study on Improvement of Connected Vehicles Interface Board and Transition Algorithm of Digital Traffic Signal Controller for Autonomous Vehicles and C-ITS (자율주행차 및 C-ITS 지원을 위한 디지털 교통신호 제어기의 신호정보연계장치 및 전이 알고리즘 개선 연구)

  • Ko, Sejin;Choi, Eunjin;Gho, Gwang-Yong;Han, Eum;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.15-29
    • /
    • 2021
  • The signal intersection is the most challenging space for autonomous vehicles. To promote the safe driving of autonomous vehicles on urban roads with traffic signals, autonomous vehicles need to receive traffic signal information from infrastructure through V2I communication. Thus, a protocol for providing traffic signal information was added to the standard traffic signal controller specification of the National Police Agency. On the other hand, there are technical limitations when applying this to digital traffic signal controllers because the protocols are defined mainly for analog traffic signal controllers. Therefore, this study proposes developing a signal information linkage module to provide traffic signal information from a digital traffic signal controller to an autonomous vehicle and an algorithm improvement method that can provide accurate traffic signal information at the time of traffic signal transition.

5G Mobile Communications: 4th Industrial Aorta (5G 이동통신: 4차 산업 대동맥)

  • Kim, Jeong Su;Lee, Moon Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.337-351
    • /
    • 2018
  • This paper discusses 5G IOT, Augmented Reality, Cloud Computing, Big Data, Future Autonomous Driving Vehicle technology, and presents 5G utilization of Pyeongchang Winter Olympic Games and Jeju Smart City model. The reason is that 5G is the main artery of the 4th industry.5G is the fourth industrial aorta because 5G is the core infrastructure of the fourth industrial revolution. In order for the AI, autonomous vehicle, VR / AR, and Internet (IoT) era to take off, data must be transmitted several times faster and more securely than before. For example, if you send a stop signal to LTE, which is a communication technology, to a remote autonomous vehicle, it takes a hundredth of a second. It seems to be fairly fast, but if you run at 100km / h, you can not guarantee safety because the car moves 30cm until it stops. 5G is more than 20 gigabits per second (Gbps), about 40 times faster than current LTE. Theoretically, the vehicle can be set up within 1 cm. 5G not only connects 1 million Internet (IoT) devices within a radius of 1 kilometer, but also has a speed delay of less than 0.001 sec. Steve Mollenkov, chief executive officer of Qualcomm, the world's largest maker of smartphones, said, "5G is a key element and innovative technology that will connect the future." With 5G commercialization, there will be an economic effect of 12 trillion dollars in 2035 and 22 million new jobs We can expect to see the effect of creation.

Exploring the influence of commuter's variable departure time in autonomous driving car operation (자율주행차 운영 환경하에서 통근자 출발시간 선택의 영향에 관한 연구)

  • Kim, Chansung;Jin, Young-Goun;Park, Jiyoung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.7-14
    • /
    • 2018
  • The purpose of this study is to analyze the effect of commuter's departure time on transportation system in future traffic system operated autonomous vehicle using agent based model. Various scenarios have been set up, such as when all passenger choose a similar departure time, or if the passenger chooses a different departure time. Also, this study tried to analyze the effect of road capacity. It was found that although many of the scenarios had been completed in a stable manner, many commuters were significantly coordinated at the desired departure time. In particular, in the case of a reduction in road capacity or in certain scenarios, it has been shown that, despite excessive schedule adjustments, many passengers are unable to commute before 9 o'clock. As a result, it is suggested that traffic management and pricing policies are different from current ones in the era of autonomous car operation.

Line Tracking Method of AGV using Sensor Fusion (센서융합을 이용한 AGV의 라인 트레킹 방법)

  • Jung, Kyung-Hoon;Kim, Jung-Min;Park, Jung-Je;Kim, Sung-Shin;Bae, Sun-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • This paper present to study the guidance system as localization technique using sensor fusion and line tracking technique using virtual line for AGV(autonomous guided vehicle). An existing AGV could drive on decided line only. And representative guidance systems of such guidance system are magnet-gyro guidance and wired guidance. However, those have had the high cost of installation and maintenance, and the difficulty of system change according to variation of working environment. To solve such problems, we make the localization system which is fused with a laser navigation and gyro, encoder. The system is robust against noise, and flexible according to working environment through sensor fusion. For line tracking of laser navigation without wire guidance, we set the virtual line in program, and design the driving controller based on difference of angle and distance between AGV's position and decided virtual line. To experiment, we use the AGV which is made by ourselves, and experiment the line tracking repeatedly on same experimental environment. In result, maximum distance error between decided virtual line and AGV's position was less than 49.93mm, and we verified that the proposed system is efficient for line tracking of actual AGV.

Enhancing Autonomous Vehicle RADAR Performance Prediction Model Using Stacking Ensemble (머신러닝 스태킹 앙상블을 이용한 자율주행 자동차 RADAR 성능 향상)

  • Si-yeon Jang;Hye-lim Choi;Yun-ju Oh
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.21-28
    • /
    • 2024
  • Radar is an essential sensor component in autonomous vehicles, and the market for radar applications in this context is steadily expanding with a growing variety of products. In this study, we aimed to enhance the stability and performance of radar systems by developing and evaluating a radar performance prediction model that can predict radar defects. We selected seven machine learning and deep learning algorithms and trained the model with a total of 49 input data types. Ultimately, when we employed an ensemble of 17 models, it exhibited the highest performance. We anticipate that these research findings will assist in predicting product defects at the production stage, thereby maximizing production yield and minimizing the costs associated with defective products.

Design and Prototype Development of An Agent for Self-Driving Car (자율운행 자동차의 에이전트 설계 및 프로토타입 개발)

  • Lim, Seung Kyu;Lee, Jae Moon
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.131-142
    • /
    • 2015
  • A self-driving car is an autonomous vehicle capable of fulfilling the main transportation capabilities of a traditional car. It must be capable of sensing its environment and navigating without human input. In this paper, we design the agent that can simulate these self-driving cars and develop a prototype for it. To do this, we analyze the requirements for the self-driving car, and then the agent is designed to be suitable for traditional multi-agent system. The key point of the design is that agents move along the steering forces only. The prototype of the designed agent was implemented by using Unity 3D. From simulation results using the prototype, movements of the agents were very realistic. However, in the case of increasing the number of the agent the performance was seriously degraded, and so the alternatives of the problem were suggested.

Vanishing Line based Lane Detection for Augmented Reality-aided Driver Induction

  • Yun, Jeong-Rok;Lee, Dong-Kil;Chun, Sung-Kuk;Hong, Sung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • In this paper, we propose the augmented reality(AR) based driving navigation based on robust lane detection method to dynamic environment changes. The proposed technique uses the detected lane position as a marker which is a key element for enhancing driving information. We propose Symmetrical Local Threshold(SLT) algorithm which is able to robustly detect lane to dynamic illumination environment change such as shadows. In addition, by using Morphology operation and Connected Component Analysis(CCA) algorithm, it is possible to minimize noises in the image, and Region Of Interest(ROI) is defined through region division using a straight line passing through several vanishing points We also propose the augmented reality aided visualization method for Interchange(IC) and driving navigation using reference point detection based on the detected lane coordinates inside and outside the ROI. Validation experiments were carried out to assess the accuracy and robustness of the proposed system in vairous environment changes. The average accuracy of the proposed system in daytime, nighttime, rainy day, and cloudy day is 79.3% on 4600 images. The results of the proposed system for AR based IC and driving navigation were also presented. We are hopeful that the proposed research will open a new discussion on AR based driving navigation platforms, and thus, that such efforts will enrich the autonomous vehicle services in the near future.

Consideration of Technical Direction of Software Defined Vehicle Integration with C-ITS based on the analysis of In-Vehicle Infotainments (차량 인포테인먼트 아키텍처 분석 기반 향후 협력 지능형 교통 체계와 SDV 연동 방향성에 대한 고찰)

  • Joon-Young Kim;Young-Eun Kim;Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.149-156
    • /
    • 2024
  • The increased intelligence and speed of vehicle infotainment, whose main purpose was emergency and external communication, is showing the potential for application to various services such as navigation and autonomous driving. In particular, functionality for linking external devices and infrastructure is being strengthened due to advances in communication and networks. Under this trend, it is necessary to consider the direction of linkage with the cooperative intelligent transportation system (C-ITS) for advanced vehicle services and driving. In addition, in the case of automobiles, future vehicle development concepts are being established based on the concept of software-defined vehicles (SDVs) in line with the trend of electrification beyond telematics and infotainment advancements, and such SDV linkage must be considered at the same time. In this paper, we consider the future direction of ITS and SDV linkage based on analysis of vehicle infotainment structure. First, for this purpose, we analyze the existing vehicle infotainment structure and architecture, and also present the structure of the SDV linked to it. Based on this, analysis and implications are drawn on the possibility of applying and linking standard-based C-ITS services with SDV devices.