• Title/Summary/Keyword: Autonomous Travelling

Search Result 17, Processing Time 0.026 seconds

A Study on Orientation and Position Control of Mobile Robot Based on Multi-Sensors Fusion for Implimentation of Smart FA (스마트팩토리 실현을 위한 다중센서기반 모바일로봇의 위치 및 자세제어에 관한 연구)

  • Dong, G.H;Kim, D.B.;Kim, H.J;Kim, S.H;Baek, Y.T;Han, S.H
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.209-218
    • /
    • 2019
  • This study proposes a new approach to Control the Orientation and position based on obstacle avoidance technology by multi sensors fusion and autonomous travelling control of mobile robot system for implimentation of Smart FA. The important focus is to control mobile robot based on by the multiple sensor module for autonomous travelling and obstacle avoidance of proposed mobile robot system, and the multiple sensor module is consit with sonar sensors, psd sensors, color recognition sensors, and position recognition sensors. Especially, it is proposed two points for the real time implementation of autonomous travelling control of mobile robot in limited manufacturing environments. One is on the development of the travelling trajectory control algorithm which obtain accurate and fast in considering any constraints. such as uncertain nonlinear dynamic effects. The other is on the real time implementation of obstacle avoidance and autonomous travelling control of mobile robot based on multiple sensors. The reliability of this study has been illustrated by the computer simulation and experiments for autonomous travelling control and obstacle avoidance.

A Study on Obstacle Avoidance and Autonomous Travelling of Mobile Robot in Manufacturing Precess for Smart Factory (스마트 팩토리를 위한 제조공정내에서 모바일 로봇의 장애물 회피 및 자율주행에 관한 연구)

  • Kim, D.B.;Kim, H.J.;Moon, J.C.;Bae, H.Y;Han, S.H.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.379-388
    • /
    • 2018
  • In this study, we propose a new approach to impliment autonomous travelling of mobile robot based on obstacle avoidance and voice command. Obstacle Avoidance technology of mobile robpot. It has been used in wide range of different robotics areas to minimize the risk of collisions. Obstacle avoidance of mobile robots are mostly applied in transportation systems such as aircraft traffic control, autonomous cars etc. Collision avoidance is a important requirement in mobile robot systems where they all featured some kind of obstacle detection techniques in order to avoid colliding. In this paper it was illustrated the reliability of voice command and obstacle avoidance for autonomous travelling of mobile robot with two wheels as the purpose of application to the manufacturing process by simulation and experiments.

Development of Infrared Telemeter for Autonomous Orchard Vehicle (과수원용 차량의 자율주행을 위한 적외선 측거 장치개발)

  • 장익주;김태한;이상민
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.131-140
    • /
    • 2000
  • Spraying operation is one of the most essential in an orchard management and it is also hazardous to human body. for automatic and unmanned spraying , an autonomous travelling vehicle is demanded. In this study, a telemeter was developed using infrared beam which could detect trunks and obstacles measure distance and direction from the vehicle travelling in the orchard. The telemeter system was composed of two infrared LED transmitters and receivers, a beam scanning device for continuous object detection , two rotary encoders for angle detector, and a beam level controller for uneven soil surface. The detected distance and direction signal s were sent to personal computer which made for the system display the angular and distance measurements through I/O board. According to a field test in an apple farm, the system detected up to 10m distance under 12 V of transmitted beam intensity, however, it was recommended that the proper beam transmit intensity be 7 v at the 10 m distance, because of the negative effect to human body at 12 V. The error rate of this system was 0.92 % when the actual distance was compared to measured one. The system was feasible at the small error rate. The developed telemeter system was an important part for autonomous travelling vehicle provided the real time object recognition . A direction control system could be constructed suing the system. It is expected that the system could greatly contribute to the development of autonomous farm vehicle.

  • PDF

A Study on Real-Time Autonomous Travelling Control of Two-wheel Driving Robot Based Ultrasonic Sensors (초음파센서기반 2휠구동로봇의 실시간 자율주행제어에 관한연구)

  • hwang, Won-Jun;Park, In-Man;Kang, Un-Wook;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.151-169
    • /
    • 2014
  • We propose a new technique for autonomous navigation and travelling of mobile robot based on ultrasonic sensors through the narrow labyrinth that leave only distance of a few centimeters on each side between the guides and the robot. In our current implementation the ultrasonic sensor system fires at a rate of 100 ms, that is, each of the 8 sensors fires once during each 100 ms interval. This is a very good firing rate, implemented here for optimal performance. This paper presents an extensively tested and verified solution to the problem of obstacle avoidance. Our solution is based on the optimal placement of ultrasonic sensors at strategic locations around the robot. Both the sensor location and the associated navigation algorithm are defined in such a way that only the accurate radial sonar data is used for accurate travelling.

Development of Autonomous Sprayer Considering Tracking Performance on Geometrical Complexity of Ground in Greenhouse

  • Lee, Dong Hoon;Lee, Kyou Seung;Cho, Yong Jin;Lee, Je Yong;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.287-295
    • /
    • 2012
  • Purpose: Some of the most representative approaches are to apply next generation technologies to save energy consumption, fully automated control system to appropriately maintain environmental conditions, and autonomous assistance system to reduce labor load and ensure operator's safety. Nevertheless, improvement of upcoming method for soil cultured greenhouse has not been sufficiently achieved. Geometrical complexity of ground in protected crop cultivation might be one of the most dominant factors in design of autonomous vehicle. While there is a practical solution fairly enough to promise an accurate travelling, such as autonomous sprayer guided by rail or induction coil, for various reasons including the limitation of producer's budget, the previously developed sprayer has not been widely distributed to market. Methods: In this study, we developed an autonomous sprayer considering travelling performance on geometrical complexity of ground in soil cultured greenhouse. To maintain a stable travelling and to acquire a real time feedback, common wire with 80 mm thick and body frame and sprayer boom. To evaluate performance of the prototype, tracking performance, climbing performance and spraying boom's uniform leveling performance were individually evaluated by corresponding experimental tests. Results: The autonomous guidance system was proved to be sufficiently suitable for accurate linear traveling with RMS as lower than approximately 10 cm from designated path. Also the prototype could climb $10^{\circ}$ of ground's slope angle with 40 kg of water weight. Uniform leveling of spraying boom was successfully performed within $0.5^{\circ}$ of sprayer boom's slope. Conclusions: Considering more complex pathways and coarse ground conditions, evaluations and improvements of the prototype should be performed for promising reliability to commercialization.

A Technology of Obstacle Avoidance of Mobile Robot (이동로봇의 장애물 회피기술)

  • Oh, Se-Bong;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.132-145
    • /
    • 2008
  • We propose a new technique for autonomous navigation and travelling of mobile robot based on ultrasonic sensors through the narrow labyrinth that leave only distance of a few centimeters on each side between the guides and the robot. In our current implementation the ultrasonic sensor system fires at a rate of 100 ms, that is, each of the 8 sensors fires once during each 100 ms interval. This is a very good firing rate, implemented here for optimal performance. This paper presents an extensively tested and verified solution to the problem of obstacle avoidance. Our solution is based on the optimal placement of ultrasonic sensors at strategic locations around the robot. Both the sensor location and the associated navigation algorithm are defined in such a way that only the accurate radial sonar data is used for accurate travelling.

A Study on a Path Planning and Real-Time Trajectory Control of Autonomous Travelling Robot for Unmanned FA (무인FA를 위한 자율주행 로봇의 경로계획 및 실시간 궤적제어에 관한 연구)

  • Kim, Hyeun-Kyun;Sim, Hyeon-Suk;Hwang, Won-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • This study proposes a efficient technology to control the optimal trajectory planning and real-time implementation method which can perform autonomous travelling for unmaned factory automation. Online path planning should plan and execute alternately in a short time, and hence it enables the robot avoid unknown dynamic obstacles which suddenly appear on robot's path. Based on Route planning and control algorithm, we suggested representation of edge cost, heuristic function, and priority queue management, to make a modified Route planning algorithm. Performance of the proposed algorithm is verified by simulation test.

Effect of tractor travelling speed on a tire slip

  • Kim, Yeon Soo;Lee, Sang Dae;Kim, Young Joo;Kim, Yong Joo;Choi, Chang Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.120-127
    • /
    • 2018
  • The rural labor force has gradually been decreasing due to the decrement of the farm population and the increment of the aging population. To solve these problems, it is necessary to develop and study autonomous agricultural machinery. Therefore, analyzing the dynamic behavior of vehicles in an autonomous agricultural environment is important. Until now, most studies on agricultural machinery, especially on ground vehicle dynamics, have been done by field tests. However, these field test methods are time consuming and costly with seasonal restrictions. A research method that can replace existing field test methods by using simulations is needed. In this study, we did basic research analyzing the effect of the travelling speed of a tractor on tire slip using simulation software. A tractor simulation model was developed based on field conditions following a straight path. The simulation was done for three ranges of speed: 20 - 30 km/h (considered the normal travelling speed range), 6 - 8 km/h (considered the plow tillage speed range) and 2 - 4 km/h (considered the rotary tillage speed range). The results of the simulation show that the slip ratio and slip angle values tended to increase as the traveling speed range of the tractor decreased. From the simulation results, it can be concluded that at low tractor speeds, it becomes more difficult to control the vehicle path. In future research, simulations will be done with various work environments such as a curved path as well as with various friction coefficient conditions, and the simulation results will be experimentally verified by applying them to an agricultural tractor.

Development of Working Path Formation Program for Autonomous Tractor System (자율 주행 트랙터 경운경로생성 프로그램 개발)

  • Seo, Il-Hwan;Seo, Dong-Hyun;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.113-121
    • /
    • 2010
  • Land consolidation ratio for rice paddy fields reached to 64.7% as of 2008 in Korea, and this also accelerated automation of field machinery. Especially, research on autonomous tractors has been continuously conducted. Tillage is one of the labor-, energy-, and time-consuming field operations. Most important requirements for autonomous tractors would be travelling path planning and electronic system to control the tractor to follow the path. The instruction of computer was required to conduct the tillage operation in field with unmanned traveling tractor. This instruction was coincidently used in the control of the traveling path and the motion of tractor. The objectives of the study were 1) to characterize and model tillage operating sequence, turning pattern, and 2) to develop tillage path formation programs for autonomous tractor and evaluate the performance.

Development of Steering Control System based on CAN for Autonomous Tractor System (자율 주행 트랙터 시스템의 성능 향상을 위한 CAN 기반의 조향제어시스템 개발)

  • Seo, Dong-Hyun;Seo, Il-Hwan;Chung, Sun-Ok;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • A steering control system based on CAN(Controller Area Network) for autonomous tractor was developed to reduce duty of a central processing computer and to improve performance of steering control in terms of reduced control interval and error. The steering control system consisted of a SCU (Steering Control Unit), an EHPS system, and a potentiometer. The SCU consisted of an MCU (Micro Controller unit), an A/D converter, and a DC-DC converter, and a PID controller was used to control steering angle. The steering control system was communicated with the computer by CAN-bus. Each actuator and implement was connected to a multi-function board interfacing with the computer through a USB cable. Without CAN, control interval of the autonomous tractor was 1.5 seconds. When the CAN-based steering control system was combined with the autonomous tractor, however, control interval of the integrated system was reduced to those less than 0.05 seconds. When the autonomous tractor was operated with 1.5-s and 0.05-s control cycles at a 0.63-m/s travelling speed, the trajectories were close to straight lines for both of the control cycles. For a 1.34-m/s traveling speed, tractor trajectory was close to sine wave with a 1.5-s control cycle, but was straight line with a 0.05-s control cycle.