• Title/Summary/Keyword: Autonomous Robot Vehicle

Search Result 131, Processing Time 0.03 seconds

Real time obstacle avoidance for autonomous mobile robot (이동 로봇의 실시간 충돌회피)

  • 권영도;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.434-439
    • /
    • 1993
  • This paper present a sensor based obstacle avoidance method which is based on a VFH(Vector Field Histogram) method. The basic idea of obstacle avoidance is to find a minimum obstacle direction and distance. From the minimum sonar index and the target direction high level system determine steering angle of mobile robot. The sonar sensor system consists of 12 ultra sonic sensor, and each sensor have its direction and safety value. This method has advantage on calculation speed and small memory. This method is implemented on indoor autonomous vehicle'ALiVE-2'.

  • PDF

Development of Usability Evaluation Criteria for Senior-Friendly Autonomous Transportation Robot

  • Kim, Seon Chil;Kim, Sun Jung;Choi, Kyongon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.407-422
    • /
    • 2014
  • Objective: The purpose of the study is to develop quantitative usability evaluation criteria for senior-friendly autonomous transportation robot. Background: The Republic of Korea has become the most rapidly aging society, and is anticipated to enter the post-aged society in 2026. To raise the quality of life of a senior with limited mobility and to reduce the burden of caregivers, many high-tech assistive products with information technologies are developed nowadays. The senior-friendly autonomous transportation robot is one person robot vehicle to move a senior to the destination for hospitals, nursing homes or silver town complex. With built-in navigation system and environmental monitoring censors, it automatically seeks the path to the destination and avoids collision to obstacles and pedestrians on the way. Due to the early stage of the product, few usability studies in this field have been done, mostly on general service robots to assist seniors, power wheelchairs and delivery robots. ISO and KS standards for the service robots are focused on safety. Method: Based on the reference usability index, the early draft of the usability evaluation questionnaires was developed. After small group tests and interviews, the experts modified the initial draft to the Usability Evaluation Criteria for Senior-Friendly Autonomous Transportation Robot (UEC-SFATR). Result: UEC-SFATR consisted of 4 subscales - Safety, Controllability, Efficiency and Satisfaction. All of the 4 subscales of UEC-SFATR were passed the reliability criteria by 4 groups of seniors, divided by gender and familiarity of smart-devices. Conclusion: UEC-SFATR covers wider area of user experiences of the SFATR and is a good measurement tool to help both the users and developers of the robot. Application: This study provides guide to the future product development and product competitiveness evaluation by quantifying user experiences for the SFATR.

A Fusion Algorithm of Pure Pursuit and Velocity Planning to Improve the Path Following Performance of Differential Driven Robots in Unstructured Environments (차동 구동형 로봇의 비정형 환경 주행 경로 추종 성능 향상을 위한 Pure pursuit와 속도 계획의 융합 알고리즘)

  • Bongsang Kim;Kyuho Lee;Seungbeom Baek;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • In the path traveling of differential-drive robots, the steering controller plays an important role in determining the path-following performance. When a robot with a pure-pursuit algorithm is used to continuously drive a right-angled driving path in an unstructured environment without turning in place, the robot cannot accurately follow the right-angled path and stops driving due to the ground and motor load caused by turning. In the case of pure-pursuit, only the current robot position and the steering angle to the current target path point are generated, and the steering component does not reflect the speed plan, which requires improvement for precise path following. In this study, we propose a driving algorithm for differentially driven robots that enables precise path following by planning the driving speed using the radius of curvature and fusing the planned speed with the steering angle of the existing pure-pursuit controller, similar to the Model Predict Control control that reflects speed planning. When speed planning is applied, the robot slows down before entering a right-angle path and returns to the input speed when leaving the right-angle path. The pure-pursuit controller then fuses the steering angle calculated at each path point with the accelerated and decelerated velocity to achieve more precise following of the orthogonal path.

Experimental Result on Map Expansion of Underwater Robot Using Acoustic Range Sonar (수중 초음파 거리 센서를 이용한 수중 로봇의 2차원 지도 확장 실험)

  • Lee, Yeongjun;Choi, Jinwoo;Lee, Yoongeon;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • This study focuses on autonomous exploration based on map expansion for an underwater robot equipped with acoustic sonars. Map expansion is applicable to large-area mapping, but it may affect localization accuracy. Thus, as the key contribution of this paper, we propose a method for underwater autonomous exploration wherein the robot determines the trade-off between map expansion ratio and position accuracy, selects which of the two has higher priority, and then moves to a mission step. An occupancy grid map is synthesized by utilizing the measurements of an acoustic range sonar that determines the probability of occupancy. This information is then used to determine a path to the frontier, which becomes the new search point. During area searching and map building, the robot revisits artificial landmarks to improve its position accuracy as based on imaging sonar-based recognition and EKF-SLAM if the position accuracy is above the predetermined threshold. Additionally, real-time experiments were conducted by using an underwater robot, yShark, to validate the proposed method, and the analysis of the results is discussed herein.

Reliable Autonomous Reconnaissance System for a Tracked Robot in Multi-floor Indoor Environments with Stairs (다층 실내 환경에서 계단 극복이 가능한 궤도형 로봇의 신뢰성 있는 자율 주행 정찰 시스템)

  • Juhyeong Roh;Boseong Kim;Dokyeong Kim;Jihyeok Kim;D. Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • This paper presents a robust autonomous navigation and reconnaissance system for tracked robots, designed to handle complex multi-floor indoor environments with stairs. We introduce a localization algorithm that adjusts scan matching parameters to robustly estimate positions and create maps in environments with scarce features, such as narrow rooms and staircases. Our system also features a path planning algorithm that calculates distance costs from surrounding obstacles, integrated with a specialized PID controller tuned to the robot's differential kinematics for collision-free navigation in confined spaces. The perception module leverages multi-image fusion and camera-LiDAR fusion to accurately detect and map the 3D positions of objects around the robot in real time. Through practical tests in real settings, we have verified that our system performs reliably. Based on this reliability, we expect that our research team's autonomous reconnaissance system will be practically utilized in actual disaster situations and environments that are difficult for humans to access, thereby making a significant contribution.

A study on autonomous Cleaning Robot for Hot-cell Application (핫셀 적용을 위한 벽면주행 청소로봇에 관한 연구)

  • 한상현;김기호;박장진;장원석;이응혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.415-415
    • /
    • 2000
  • The functions of a mobile robot such as obstacle knowledge and collision avoidance for in-door cleaning are necessary features, as has been much studied in the field of industrial automatic guided vehicle or general mobile robot. A mobile robot, in order to avoid collision with obstacles, has to gather data with environment knowledge sensors and recognize environment and the shape of obstacles from the data. In the study, a wall-following algorithm was suggested as a autonomous moving algorithm in which a mobile robot can recognize obstacles in indoor like environment and do cleaning work in effect. The system suggested in the study is for cleaning of nuclear material dusts generated in the process of nuclear fuel manufacturing and decontamination of devices in disorder which is performed in M6 radioactive ray shield hot-cell in IMEF(Irradiated Material Examination Facility) in the Korea Atomic Energy Research Institute.

  • PDF

Experimental Setup for Autonomous Navigation of Robotic Vehicle for University Campus (대학 캠퍼스용 로봇차량의 자율주행을 위한 실험환경 구축)

  • Cho, Sung Taek;Park, Young Jun;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • This paper presents the experimental setup for autonomous navigation of a robotic vehicle for touring university campus. The robotic vehicle is developed for navigation of specific areas such as university campus or play parks. The robotic vehicle can carry two passengers to travel short distances. For the robotic vehicle to navigate autonomously the specific distance from the main gate to the administrative building in the university, the experimental setup for SLAM is presented. As an initial step, a simple method of following the line detected by a single camera is implemented for the partial area. The central line on the pavement colored with two kinds, red and yellow, is detected by image processing, and the robotic vehicle is commanded to follow the line. Experimental studies are conducted to demonstrate the performance of navigation as a possible touring vehicle.

Behavior-based Control Considering the Interaction Between a Human Operator and an Autonomous Surface Vehicle (운용자와 자율 무인선 상호 작용을 고려한 행위 기반의 제어 알고리즘)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan;Jo, Yongjin;Ryu, Jaekwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.620-626
    • /
    • 2019
  • With the development of robot technology, the expectation of autonomous mission operations has increased, and the research on robot control architectures and mission planners has continued. A scalable and robust control architecture is required for unmanned surface vehicles (USVs) to perform a variety of tasks, such as surveillance, reconnaissance, and search and rescue operations, in unstructured and time-varying maritime environments. In this paper, we propose a robot control architecture along with a new utility function that can be extended to various applications for USVs. Also, an additional structure is proposed to reflect the operator's command and improve the performance of the autonomous mission. The proposed architecture was developed using a robot operating system (ROS), and the performance and feasibility of the architecture were verified through simulations.

Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

  • Sun, Yu-shan;Ran, Xiang-rui;Li, Yue-ming;Zhang, Guo-cheng;Zhang, Ying-hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • Autonomous Underwater Vehicles (AUVs) generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment) loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

Magnetic Position Sensing System for Autonomous Vehicle and Robot Guidance (자율주행차량과 로봇의 안내를 위한 자계위치인식시스템)

  • Jeong, Yeong-Yun;Kim, Geun-Mo;Yu, Yeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.123-126
    • /
    • 2006
  • 본 논문은 자율주행차량과 로봇의 안내를 위한 자계위치인식시스템을 제안한다. 자계위치인식시스템은 자성체로부터 발생되는 자계를 측정하여 위치를 인식한다. 이러한 자계위치인식시스템에서 지구자계는 기본적인 왜란으로 작용한다. 본 논문에서는 지구자계의 영향을 제거하기 위해서 다수의 1축 자계센서 열을 구성하였으며, 자계센서 출력의 선형구간을 이용하여 정밀한 위치인식시스템을 개발하였다. 본 논문에서 제안하는 자계위치인식시스템은 실험을 통하여 그 실용성을 검증하였다.

  • PDF