• Title/Summary/Keyword: Autonomous Manufacturing

Search Result 144, Processing Time 0.024 seconds

A Study on Obstacle Avoidance and Autonomous Travelling of Mobile Robot in Manufacturing Precess for Smart Factory (스마트 팩토리를 위한 제조공정내에서 모바일 로봇의 장애물 회피 및 자율주행에 관한 연구)

  • Kim, D.B.;Kim, H.J.;Moon, J.C.;Bae, H.Y;Han, S.H.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.379-388
    • /
    • 2018
  • In this study, we propose a new approach to impliment autonomous travelling of mobile robot based on obstacle avoidance and voice command. Obstacle Avoidance technology of mobile robpot. It has been used in wide range of different robotics areas to minimize the risk of collisions. Obstacle avoidance of mobile robots are mostly applied in transportation systems such as aircraft traffic control, autonomous cars etc. Collision avoidance is a important requirement in mobile robot systems where they all featured some kind of obstacle detection techniques in order to avoid colliding. In this paper it was illustrated the reliability of voice command and obstacle avoidance for autonomous travelling of mobile robot with two wheels as the purpose of application to the manufacturing process by simulation and experiments.

A Study on Furrow Autonomous Steering using Furrow Recognition Sensor Module (고랑인식 센서 모듈을 이용한 밭고랑 자율조향에 대한 연구)

  • Cho, Yongjun;Park, Kwanhyung;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Kang, Minsu;Jang, Sunho;Seo, Kabho;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.92-97
    • /
    • 2022
  • In this paper, as a research on autonomous steering for agriculture, a sensor module for furrow recognition was developed through a low-cost distance sensor combination. The developed sensor module was applied to the vehicle, and when driving in a furrow curve, the autonomous steering success rate was 100% at a curvature of 20 m or more, and 70% at a curvature of 15 m or less. The self-steering success rate according to the ground condition showed a 100% success rate regardless of soil, weeds, or mulching film.

A Study on the Control and Operation of Autonomous Distributed Machining System (자율, 분산된 기계가공시스템의 제어 모델 및 운영 기술에 관한 연구)

  • Lee, Young-Hae;Kim, Jeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.17-29
    • /
    • 1999
  • The manufacturing systems have to cope with the circumstance that the requirements of customers are changed abruptly and the life cycle of product becomes short. In this paper, to develop the efficient control and operation of autonomous, distributed machining systems the concept of Holonic Manufacturing System is adopted and methods for the control and operation of the system are proposed including an evaluation function for the negotiation between holons. And it is applied to scheduling and selection of operations to be worked with consideration of quality. It is expected that the proposed methods may be applied to operate autonomous, distributed machining systems.

  • PDF

Autonomous Navigation of Nonholonomic Mobile Robots Using Generalized Voronoi Diagrams (일반화된 보로노이 다이어그램을 이용한 논홀로노믹 모바일 로봇의 자율 주행)

  • Shaoa, Minglei;Shin, Dongik;Shin, Kyoosik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.98-102
    • /
    • 2015
  • This paper proposes an autonomous navigation method for a nonholonomic mobile robot, based on the generalized Voronoi diagram (GVD). We define the look-ahead point for a given motion constraint to determine the direction of motion, which solves the problem of a minimum turning radius for the real nonholonomic mobile robot. This method can be used to direct the robot to explore an unknown environment and construct smooth feedback curves for the nonholonomic robot. As the trajectories can be smoothed, the position of the robot can be stabilized in the plane. The simulation results are presented to verify the performance of the proposed methods for the nonholonomic mobile robot. Furthermore, this approach is worth drawing on the experience of any other mobile robots.

Development of Autonomous Steering Platforms for Upland Furrow (노지 밭고랑 환경 적용을 위한 자율조향 플랫폼 개발)

  • Cho, Yongjun;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Park, Hui Chang;Kang, Minsu;Park, Kwanhyung;Seo, Kabho;Kim, Sunduck;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-75
    • /
    • 2021
  • We developed a platform that was capable of autonomous steering in a furrow environment. It was developed to autonomously control steering by recognizing the furrow using a laser distance, three-axis tilt, and temperature sensor. The performance evaluation indicated that the autonomous steering success rate was 99.17%, and it was possible to climb up to 5° on the slope. The usage time was approximately 40 h, and the maximum speed was 6.7 km/h.

Stochastic learning scheme in quasi-distributed management method for autonomous manufacturing systems

  • Suzuki, Keiji;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.312-317
    • /
    • 1992
  • This paper proposes a new framework of an autonomous and distributed flexible manufacturing system - Multi Client Robot Groups(MCR) - and describes a stochastic learning scheme applied to managerial problems of the system. The MCR is composed of groups of manufacturing robots, named Client Robots (CRs), which are capable of both versatility and independence in their performances. The MCR is expected to have high performance because the MCR can perform concurrent and corporative processing. However, the system performance is determined by the organizations of the CR groups. Therefore the treatment of the managerial problems and organizations of the system are important problems. In this paper, it is assumed that CR groups being able to processing tasks are selected stochastically based on the strengths of the robot groups. The learning scheme adjusting the strength is introduced to organize the groups in the system and control the each performance of the groups according to the total system performance. Finally, some experimental results of the learning scheme are shown.

  • PDF

An Autonomous Operational Service System for Machine Vision-based Inspection towards Smart Factory of Manufacturing Multi-wire Harnesses

  • Seung Beom, Hong;Kyou Ho, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.317-325
    • /
    • 2022
  • In this study, we propose a technological system designed to provide machine vision-based automatic inspection and autonomous operation services for an entire process related to product inspection in wire harness manufacturing. The smart factory paradigm is a valuable and necessary goal, small companies may encounter steep barriers to entry. Therefore, the best approach is to develop towards this approach gradually in stages starting with the relatively simple improvement to manufacturing processes, such as replacing manual quality assurance stages with machine vision-based inspection. In this study, we consider design issues of a system based on the proposed technology and describe an experimental implementation. In addition, we evaluated the implementation of the proposed technology. The test results show that the adoption of the proposed machine vision-based automatic inspection and operation service system for multi-wire harness production may be considered justified, and the effectiveness of the proposed technology was verified.

Trends in AI Technology for Smart Manufacturing in the Future (미래 스마트 제조를 위한 인공지능 기술동향)

  • Lee, E.S.;Bae, H.C.;Kim, H.J.;Han, H.N.;Lee, Y.K.;Son, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.60-70
    • /
    • 2020
  • Artificial intelligence (AI) is expected to bring about a wide range of changes in the industry, based on the assessment that it is the most innovative technology in the last three decades. The manufacturing field is an area in which various artificial intelligence technologies are being applied, and through accumulated data analysis, an optimal operation method can be presented to improve the productivity of manufacturing processes. In addition, AI technologies are being used throughout all areas of manufacturing, including product design, engineering, improvement of working environments, detection of anomalies in facilities, and quality control. This makes it possible to easily design and engineer products with a fast pace and provides an efficient working and training environment for workers. Also, abnormal situations related to quality deterioration can be identified, and autonomous operation of facilities without human intervention is made possible. In this paper, AI technologies used in smart factories, such as the trends in generative product design, smart workbench and real-sense interaction guide technology for work and training, anomaly detection technology for quality control, and intelligent manufacturing facility technology for autonomous production, are analyzed.

A Study on Basic Technology for Autonomous-Driving Using RC car (RC카를 이용한 자율주행 기초 기술 연구)

  • Shin, Jae-Ho;Yoo, Jae-Young;Han, Jun-Hee;Hwang, In-Jun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.49-58
    • /
    • 2022
  • With the recent start of the 4th Industrial Revolution, markets related to autonomous driving are rapidly developing. In order to understand the rapidly developed technology trend of autonomous driving technology, we would like to investigate the characteristics and differences of level 0 to level 5 of autonomous driving. The overall configuration, recognition technology, and auxiliary technologies of autonomous vehicles are analyzed, and through this, the structure and algorithm of autonomous driving technology are identified. In addition, by manufacturing a simulated autonomous RC car using an ultrasonic sensor and a camera, the necessity of recognition technology and auxiliary technology is identified.

A Method for Efficient Operation of Intelligent Manufacturing Systems (IMS(지능생산시스템)의 효율적인 운용 기법 개발에 관한 연구 - 자원 관리 기법을 중심으로 -)

  • 이영해;이병호;조창희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.113-124
    • /
    • 1998
  • Manufacturing systems are becoming intelligent, decentralized, autonomous, which is so called as Intelligent Manufacturing Systems(IMS). In this paper, a method for efficient resource management in Holonic Manufacturing System which is one alternative of IMS, was developed. The developed method was evaluated with the current possible method and the results are shown.

  • PDF