• Title/Summary/Keyword: Autonomous Guided Vehicle

Search Result 52, Processing Time 0.024 seconds

A Study on Adaptive Control of AGV using Immune Algorithm (면역알고리즘을 이용한 AGV의 적응제어에 관한 연구)

  • 이영진;최성욱;손주한;이진우;조현철;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.56-63
    • /
    • 2000
  • Abstract - In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

Safety Improvement Test of a GNSS-based AGV (위성항법 기반 AGV의 안전성 향상 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Han, Ji-Ae;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.648-654
    • /
    • 2010
  • In this paper, a navigation system was designed, and performance tested in order to confirm the safety improvement of the GNSS(Global Navigation Satellite System)-based AGV(Autonomous Guided Vehicle) which used only position information on of GNSS. We developed DR(Dead Reckoning) navigation system that involve the use of GNSS abnormal positoning error detection and GNSS signal outage. The test results show that GNSS positioning error is detection can be archived with an error of more than 0.15m. In addition, the DR driving position error is 1.5m for an 8s GNSS positioning service outage.

An AGV Driving Control using immune Algorithm Adaptive Controller (면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, Yeong-Jin;Lee, Gwon-Sun;Lee, Jang-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.201-212
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the cast that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

A Study on Implementation of Immune Algorithm Adaptive Controller for AGV Driving Control (AGV의 주행 제어를 위한 면역 알고리즘 적응 제어기 실현에 관한 연구)

  • 이영진;이진우;손주한;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.187-197
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied to the driving control of the autonomous guided vehicle(AGV). When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged by the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined through this off-line manner, these parameters are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted more accurately through the on-line fine tuning. The experiment for the control of steering and speed of AGV is performed. The results show that the proposed controller provides better performances than other conventional controllers.

  • PDF

보급형 센서를 장착한 자율주행로봇의 위치제어기 설계 및 제작

  • 홍순학;최병홍;한석균;박종현;김용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.566-569
    • /
    • 1993
  • This paper presents the design and implementation of an industrial controller for an autonomous guided vehicle(AGV) with economic sensor. A guidance scheme provides accurate tracking and achieves faster minimizing oftracking error. A sensor at the center provides the position and orientation of the vehicle relative to the track. Control laws that make use of this information have been devised to achieve accurate and fast tracking. The gains are modified on-line to achieve proper tracking. The simulation and implementation results are provided for the illustration of the implemented controller.

  • PDF

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

A Study on Detection of Lane and Situation of Obstacle for AGV using Vision System (비전 시스템을 이용한 AGV의 차선인식 및 장애물 위치 검출에 관한 연구)

  • 이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.207-217
    • /
    • 2000
  • In this paper, we describe an image processing algorithm which is able to recognize the road lane. This algorithm performs to recognize the interrelation between AGV and the other vehicle. We experimented on AGV driving test with color CCD camera which is setup on the top of vehicle and acquires the digital signal. This paper is composed of two parts. One is image preprocessing part to measure the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are angle, distance error and real position of other vehicles, we should calculate the reference steering angle.

  • PDF

A Study on Driving Control using Neural Network Identifier (신경회로망 동정기를 이용한 AGV의 주행제어에 관한 연구)

  • 이영진;이진우;손주한;최성욱;김한근;조현철;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.151-151
    • /
    • 2000
  • The objective of this paper is to develop the new robust and adaptive control system against external environments as applying the probabilistic recognition which is one of the inherent properties of immune system, ability of learning and memorization, and regulation theory of immune network to the system under engineering point of view. In this paper, HIA(Humoral Immune Algorithm) PID controller using Neural Network Identifier was proposed to drive the autonomous guided vehicle(AGV) more effectively. To verify the performance of the proposed HIA PID controller, some experiments for the control of steering and speed of that AGV are performed.

  • PDF

Reflection Removal in Stereo Vision Under Night Illumination (야간 조명 아래 스테레오 비전의 반사 제거)

  • Naveed, Sairah;Lee, Sang-Woong
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.26-27
    • /
    • 2012
  • Reflection considered as the view disturbing noise in optical systems, such as stereo camera in autonomous vehicles especially in night. Reflection caused by the street light or due to rainwater under adverse weather conditions. A blur image detected by the camera that results in wrong guidance to vehicle for detecting its track. A vehicle guidance approach through stereo vision can be same in day and night time. However it cannot be guided with same image analysis due to diverse illumination conditions. We develop the technique that shows its efficacy with illustrations of reflection removal off the camera lens and vehicle tracking control.

  • PDF

Vision-Based Self-Localization of Autonomous Guided Vehicle Using Landmarks of Colored Pentagons (컬러 오각형을 이정표로 사용한 무인자동차의 위치 인식)

  • Kim Youngsam;Park Eunjong;Kim Joonchoel;Lee Joonwhoan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.387-394
    • /
    • 2005
  • This paper describes an idea for determining self-localization using visual landmark. The critical geometric dimensions of a pentagon are used here to locate the relative position of the mobile robot with respect to the pattern. This method has the advantages of simplicity and flexibility. This pentagon is also provided nth a unique identification, using invariant features and colors that enable the system to find the absolute location of the patterns. This algorithm determines both the correspondence between observed landmarks and a stored sequence, computes the absolute location of the observer using those correspondences, and calculates relative position from a pentagon using its (ive vortices. The algorithm has been implemented and tested. In several trials it computes location accurate to within 5 centimeters in less than 0.3 second.