• Title/Summary/Keyword: Autonomous Driving Vehicle

Search Result 533, Processing Time 0.019 seconds

5GHz Wi-Fi Design and Analysis for Vehicle Network Utilization (차량용 네트워크 활용을 위한 5GHz WiFi 설계 및 분석)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.18-25
    • /
    • 2020
  • With the development of water internet technology, data communication between objects is expanding. Research related to data communication technology between vehicles that incorporates related technologies into vehicles has been actively conducted. For data communication between mobile terminals, data stability, reliability, and real-time performance must be guaranteed. The 5 GHz Wi-Fi band, which is advantageous in bandwidth, communications speed, and wireless saturation of the wireless network, was selected as the data communications network between vehicles. This study analyzes how to design and implement a 5 GHz Wi-Fi network in a vehicle network. Considering the characteristics of the mobile communication terminal device, a continuous variable communications structure is proposed to enable high-speed data switching. We simplify the access point access procedure to reduce the latency between wireless terminals. By limiting the Transmission Control Protocol Internet Protocol (TCP/IP)-based Dynamic Host Configuration Protocol (DHCP) server function and implementing it in a broadcast transmission protocol method, communication delay between terminal devices is improved. Compared to the general commercial Wi-Fi communication method, the connection operation and response speed have been improved by five seconds or more. Utilizing this method can be applied to various types of event data communication between vehicles. It can also be extended to wireless data-based intelligent road networks and systems for autonomous driving.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

A Study on Time Synchronization Method for Analyzing the Network Performance of Remote Control System (원격운용 시스템의 네트워크 성능분석을 위한 시간동기화 방안에 관한 연구)

  • Yang, DongWon;Kim, Namgon;Kim, Dojong
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.141-149
    • /
    • 2022
  • With the development of artificial intelligence and unmanned technologies, the remote surveillance/autonomous driving systems have been actively researched. For an effective performance analysis of the developed remote control system, it is important to record the data of it in real time. In addition, in order to analyze the performance between the control system and the remote system, the recorded data from them should be synchronized with time. In this paper we proposed a novel time synchronization method for the remote control system. The proposed remote control system satisfies the time difference of the recorded data within 1 ms, and we can reduce the time difference by using a CPU shielding and affinity setting. The performance of the proposed method was proved through various network data storage experiments. And the experiments confirmed that the proposed method can be applied to recording devices of unmanned ground vehicles and control vehicles. The proposed method will be used as a method for analyzing network data of UGV-R (Unmanned Ground Vehicle - Reconnaissance).