• Title/Summary/Keyword: Autonomous Driving Vehicle

Search Result 520, Processing Time 0.023 seconds

Study on the Operational Test Scenarios for Assessment of Unmanned Ground Vehicle's Operation Suitability (UGV의 운용적합성 평가를 위한 운용 시험 시나리오 연구)

  • Gyumin Kang;Kyungsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.6-15
    • /
    • 2023
  • This paper develops scenarios to evaluate the safety performance of Unmanned Ground Vehicle on military circumstances. The scenarios were created using Pegasus Project 6-layer format. These scenarios consist of straight road, curved road, merging road and crossroad. We adapt these scenarios to unpaved road. The characteristics of unpaved roads were divided into roughness, friction coefficient and road frequency. This adaption is validated via computer simulation. We observe the scan lines of vehicle become tangled of the straight road that make the cognitive abilities of the vehicle low and the lane-keeping is unable when vehicles entering curved off-roads over 40 km/h. The developed scenarios will contribute to enhancing stability from the perspective of introducing autonomous driving technology to Korean military.

Reinforcement Learning Strategy for Automatic Control of Real-time Obstacle Avoidance based on Vehicle Dynamics (실시간 장애물 회피 자동 조작을 위한 차량 동역학 기반의 강화학습 전략)

  • Kang, Dong-Hoon;Bong, Jae Hwan;Park, Jooyoung;Park, Shinsuk
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.297-305
    • /
    • 2017
  • As the development of autonomous vehicles becomes realistic, many automobile manufacturers and components producers aim to develop 'completely autonomous driving'. ADAS (Advanced Driver Assistance Systems) which has been applied in automobile recently, supports the driver in controlling lane maintenance, speed and direction in a single lane based on limited road environment. Although technologies of obstacles avoidance on the obstacle environment have been developed, they concentrates on simple obstacle avoidances, not considering the control of the actual vehicle in the real situation which makes drivers feel unsafe from the sudden change of the wheel and the speed of the vehicle. In order to develop the 'completely autonomous driving' automobile which perceives the surrounding environment by itself and operates, ability of the vehicle should be enhanced in a way human driver does. In this sense, this paper intends to establish a strategy with which autonomous vehicles behave human-friendly based on vehicle dynamics through the reinforcement learning that is based on Q-learning, a type of machine learning. The obstacle avoidance reinforcement learning proceeded in 5 simulations. The reward rule has been set in the experiment so that the car can learn by itself with recurring events, allowing the experiment to have the similar environment to the one when humans drive. Driving Simulator has been used to verify results of the reinforcement learning. The ultimate goal of this study is to enable autonomous vehicles avoid obstacles in a human-friendly way when obstacles appear in their sight, using controlling methods that have previously been learned in various conditions through the reinforcement learning.

Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle (자율주행 장치를 위한 수정된 유전자 알고리즘을 이용한 경로계획과 특징 맵 기반 SLAM)

  • Kim, Jung-Min;Heo, Jung-Min;Jung, Sung-Young;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.381-387
    • /
    • 2009
  • This paper is presented simultaneous localization and mapping (SLAM) based on feature map and path-planning using modified genetic algorithm for efficient driving of autonomous vehicle. The biggest problem for autonomous vehicle from now is environment adaptation. There are two cases that its new location is recognized in the new environment and is identified under unknown or new location in the map related kid-napping problem. In this paper, SLAM based on feature map using ultrasonic sensor is proposed to solved the environment adaptation problem in autonomous driving. And a modified genetic algorithm employed to optimize path-planning. We designed and built an autonomous vehicle. The proposed algorithm is applied the autonomous vehicle to show the performance. Experimental result, we verified that fast optimized path-planning and efficient SLAM is possible.

A Study on the Application of AI and Linkage System for Safety in the Autonomous Driving (자율주행시 안전을 위한 AI와 연계 시스템 적용연구)

  • Seo, Dae-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.95-100
    • /
    • 2019
  • In this paper, autonomous vehicles of service with existing vehicle accident for the prevention of the vehicle communication technology, self-driving techniques, brakes automatic control technology, artificial intelligence technologies such as well and developed the vehicle accident this occur to death or has been techniques, can prepare various safety cases intended to minimize the injury. In this paper, it is a study to secure safety in autonomous vehicles. This is determined according to spatial factors such as chip signals for general low-power short-range wireless communication and micro road AI. On the other hand, in this paper, the safety of boarding is improved by checking the signal from the electronic chip, up to "recognition of the emotion from residence time in the sensing area" to the biological electronic chip. As a result of demonstrating the reliability of the world countries the world, inducing safety autonomous system of all passengers in terms of safety. Unmanned autonomous vehicle riding and commercialization will lead to AI systems and biochips (Verification), linked IoT on the road in the near future, and the safety technology reliability of the world will be highlighted.

Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture (농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발)

  • Lee, Kyuho;Kim, Bongsang;Choi, Hyohyuk;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.

A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle

  • Kim, KyungDeuk;Son, SuRak;Jeong, YiNa;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4123-4141
    • /
    • 2019
  • Autonomous driving technology is divided into 0~5 levels. Of these, Level 5 is a fully autonomous vehicle that does not require a person to drive at all. The automobile industry has been trying to develop Level 5 to satisfy safety, but commercialization has not yet been achieved. In order to commercialize autonomous unmanned vehicles, there are several problems to be solved for driving safety. To solve one of these, this paper proposes 'A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle' that diagnoses not only the parts of a vehicle and the sensors belonging to the parts, but also the influence upon other parts when a certain fault happens. The DLPP consists of an In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the translation of messages happening in a vehicle, the IOG not only has the translation function of an existing gateway but also judges whether a fault happened in a sensor or parts by using a Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by using the payloads transferred from the IOG. Because the PSM is designed based on an LSTM algorithm, it diagnoses a vehicle's fault by considering the correlation between previous diagnosis result and current measured parts data.

Vision and Lidar Sensor Fusion for VRU Classification and Tracking in the Urban Environment (카메라-라이다 센서 융합을 통한 VRU 분류 및 추적 알고리즘 개발)

  • Kim, Yujin;Lee, Hojun;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2021
  • This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.

Hazard Analysis of Autonomous Vehicle due to V2I Malfunction (V2I 오작동에 의한 자율주행자동차의 위험성 분석)

  • Ahn, Dae-ryong;Shin, Seong-geun;Baek, Yun-soek;Lee, Hyuck-kee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.251-261
    • /
    • 2019
  • The importance of autonomous driving systems that utilize V2X services such as V2V(Vehicle to Vehicle) and V2I(Vehicle to Infrastructure) for safer and more comfortable driving is increasing with the recent development of autonomous vehicles. Partly autonomous vehicles based on environmental sensors have limitations for predicting and determining areas beyond the recognition distance of the mounted sensors and in response to atypical objects that are difficult to detect. Therefore, it is important to utilize the V2X service to improve the limit of sensor detection performance and to make driving safer and more comfortable. However, there may be an accident risk of autonomous vehicles due to incorrect information provided by V2X. Thus, the application of technology to prevent this needs to be considered. In this pater, we used the ISO-26262 Part3 Process and performed HARA (Hazard Analysis and Risk Assessment) to derive the risk sources of autonomous vehicles due to V2I malfunctions by using the communication between vehicles and infrastructure among V2X. We also developed ASIL ratings based on the simulations and real vehicle tests of the malfunctions of major cases of usnig V2I.

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

Precise Vehicle Localization Using Gaussian Mixture Map Based on Road Marking

  • Kim, Kyu-Won;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • It is essential to estimate the vehicle localization for an autonomous safety driving. In particular, since LIDAR provides precise scan data, many studies carried out to estimate the vehicle localization using LIDAR and pre-generated map. The road marking always exists on the road because of provides driving information. Therefore, it is often used for map information. In this paper, we propose to generate the Gaussian mixture map based on road-marking information and localization method using this map. Generally, the probability distributions map stores the single Gaussian distribution for each grid. However, single resolution probability distributions map cannot express complex shapes when grid resolution is large. In addition, when grid resolution is small, map size is bigger and process time is longer. Therefore, it is difficult to apply the road marking. On the other hand, Gaussian mixture distribution can effectively express the road marking by several probability distributions. In this paper, we generate Gaussian mixture map and perform vehicle localization using Gaussian mixture map. Localization performance is analyzed through the experimental result.