• Title/Summary/Keyword: Autonomous Driving Infrastructures

Search Result 5, Processing Time 0.017 seconds

Deriving the Role of Sign Facilities Recognized by Autonomous Vehicles (자율주행차량이 인식 가능한 표지 시설의 역할 도출)

  • Young-Jae JEON;Jin-Woo KIM;Chan-Oh KWON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • With the advent of the 4th industrial revolution era, interest in autonomous driving technology is increasing. Accordingly it is necessary to seek safe driving by recognizing surrounding situations using sensors attached to autonomous vehicles along with the applicability of existing traffic facilities to autonomous driving lanes and the utilization of HD maps. In this study, in order to deduce the role of sensor only physical facilities which recognized through a laser scanner on an autonomous vehicle developed to improve road and traffic infrastructure, through comparative analysis with existing road facilities such as road signs, safety signs, and gaze guidance facilities. Sign facilities can promote driving safety by allowing autonomous vehicles to perform specific actions directly. In order to promote safe driving by recognizing sign facilities by using sensors for autonomous vehicles, it is necessary to prepare standards for installation, management, and use, and it is considered that management and supervision should be carried out continuously according to the standards.

Development of Collision Prevention Usage Scenario based on Vehicle-to-Vehicle Communication of Autonomous Vehicles (자율주행 차량의 차량 대 차량 통신에 기반한 충돌방지 활용 시나리오 개발)

  • Seo, HyunDuk;Kwon, Doyoung;Shin, Jaemin;Choi, Eunhyuk;Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.251-257
    • /
    • 2022
  • Self-driving vehicles are a type of smart vehicle with the help of ICT technology, which means a vehicle that operates without the intervention of a driver.Vehicles with vehicle safety communication technology (V2X) applied use information detected from various sensors or other vehicles/infrastructures to enable the smart vehicle to accurately and quickly predict the driver's potential danger situation, contributing to more stable autonomous driving. In this paper, among V2X communication technologies, a vehicle-to-vehicle communication (V2V) simulation communication technology is used to present a scenario for preventing collisions in autonomous vehicles. A vehicle collision prevention system based on V2V simulated communication was implemented and the suggested collision prevention application scenario was demonstrated. The suggested collision prevention utilization scenario can be considered as one application case of V2V communication technologies that are currently being developed/applied.

Intelligent Transportation System (ITS) research optimized for autonomous driving using edge computing (엣지 컴퓨팅을 이용하여 자율주행에 최적화된 지능형 교통 시스템 연구(ITS))

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • In this scholarly investigation, the focus is placed on the transformative potential of edge computing in enhancing Intelligent Transportation Systems (ITS) for the facilitation of autonomous driving. The intrinsic capability of edge computing to process voluminous datasets locally and in a real-time manner is identified as paramount in meeting the exigent requirements of autonomous vehicles, encompassing expedited decision-making processes and the bolstering of safety protocols. This inquiry delves into the synergy between edge computing and extant ITS infrastructures, elucidating the manner in which localized data processing can substantially diminish latency, thereby augmenting the responsiveness of autonomous vehicles. Further, the study scrutinizes the deployment of edge servers, an array of sensors, and Vehicle-to-Everything (V2X) communication technologies, positing these elements as constituents of a robust framework designed to support instantaneous traffic management, collision avoidance mechanisms, and the dynamic optimization of vehicular routes. Moreover, this research addresses the principal challenges encountered in the incorporation of edge computing within ITS, including issues related to security, the integration of data, and the scalability of systems. It proffers insights into viable solutions and delineates directions for future scholarly inquiry.

A Decision Scheme of Dynamic Task Size for Cloud Server composed of Connected Cars (연결형 자동차로 구성된 클라우드 서버를 위한 동적 작업 크기 결정 기법)

  • Min, Hong;Jung, Jinman;Kim, Taesik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2020
  • With developing vehicle and communication technologies, cars can communicate with road-side infrastructures and among other cars. As autonomous driving cars have been developed, the cars are equipped with many sensors and powerful processing units. There are many studies related to provide cloud services to users by using available resources of connected cars. In this paper, we proposed a dynamic task size decision scheme that considers communication environment between a vehicle and a base station as well as available resources while allocating a proper task to each vehicle. Simulation results based on the proposed model show that a vehicle can complete its allocated task when we considers available resources and communication environments.

A Study on the Analysis of Bridge Safety by Truck Platooning (차량 군집 주행에 따른 교량 안전성 분석에 관한 연구 )

  • Sangwon Park;Minwoo Chang;Dukgeun Yun;Minhyung No
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.50-57
    • /
    • 2023
  • Autonomous driving technologies have been gradually improved for road traffic owing to the development of artificial intelligence. Since the truck platooning is beneficial in terms of the associated transporting expenses, the Connected-Automated Vehicle technology is rapidly evolving. The structural performance is, however, rarely investigated to capture the effect of truck platooning on civil infrastructures.In this study, the dynamic behavior of bridges under truck platooning was investigated, and the amplification factor of responses was estimated considering several parameters associated with the driving conditions. Artificial intelligence techniques were used to estimate the maximum response of the mid span of a bridge as the platooning vehicles passing, and the importance of the parameters was evaluated. The most suitable algorithm was selected by evaluating the consistency of the estimated displacement.