• 제목/요약/키워드: Automotive wheel

검색결과 426건 처리시간 0.027초

차량용 타이어의 마멸손상에 관한 고장사례 연구 (Failure Studies on the Wear Scars of an Automotive Tire)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • 제23권5호
    • /
    • pp.228-233
    • /
    • 2007
  • This paper presents the case studies on the friction related wears of an automotive tire, which is strongly connected to the safety and comfort of a driver during a running of a car. Wear scars of a tire tread are affected by various causes such as an air pressure, a wheel alignment, a driving speed, road conditions, starting and braking habits of a driver. The data were collected from used tires for a replacement at the car service center. Most of the wear problems came from the improper repair and adjustment of revolving components, which cause an unbalanced wear of a tread part of a tire. Thus, the regular checking of a tire radically reduces the wear scars of a tire and may increase a driving safety and a fuel economy of a car and a wear life of a tire.

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

Fault-Tolerant Steer-By-Wire 제어 시스템의 개발 (Development of a Fault-Tolerant Steer-By-Wire Control System)

  • 김재석;황운기;이운성
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-8
    • /
    • 2006
  • The Steer-By-Wire(SBW) system replaces complex mechanical linkages of the current steering system with electric motors, sensors, and electronic control units. However, the SBW system should guarantee its safety and reliability before commercialization, and therefore, a reliable and robust fault-tolerant technology has to be implemented. This paper proposes a fault-tolerant control algorithm for the SBW system. Based on careful analysis on propagation effects of sensor faults, a reliable fault-tolerant control strategy has been developed. The fault-tolerant controller consists of a fault detection part that monitors and detects faults in the steering wheel and road wheel sensors, and a reconfiguration part that switches to normal sensor signal based on fault detection information. It has been demonstrated by simulation that the proposed algorithm detects sensor faults accurately and enables reliable steering control under various dynamic fault situations.

허브스페이스의 구조적 안전성 해석에 대한 연구 (A Study on Structural Safety Analysis of Hub Space)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.352-359
    • /
    • 2015
  • This study investigates the analysis result of structure and fatigue due to the models of the hub space with bolt joint at wheel and the existence or nonexistence of hub ring as the part of suspension system of vehicle. As the static analysis result, the structural vulnerability can be found at hub bolt and the center of wheel at three models. Model 2 and 3 have nearly same deformation and model 1 can be endured at the least load among three models. As the fatigue analysis result, fatigue lives of three models are same at the severest load of SAE bracket history. As many screw threads of weak bolts are jointed in case of model 1, model 1 is shown to be the weakest at fatigue damage among three models. By the result of this study, model 1 with bolt joint becomes most weakest among three models. As model 2 with no hub ring and model 3 with hub ring have the nearly same states of analysis results, hub ring is shown to have no influence on the safety of automotive driving.

자동차용 미끄럼 방지 제동 장치의 동특성에 관한 시뮬레이션 연구 (A simulation study on the dynamics of an antiskid brake systems for automotive vehicles)

  • 김경훈;조형석;홍예선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.315-320
    • /
    • 1988
  • This paper considers modelling and control of ABS(Anti-skid Brake System) which avoids dangerous wheel locking due to excessive brake pressure during the vehicle braking. The brake pressure is controlled by on and off's of solenoid valves via the variation of the wheel circumferential deceleration measured using tacho-sensors. The dynamic model between the brake pressure and the wheel acceleration of a vehicle is mathematically derived. The computer simulation shows that the threshold value of the on-off control is critical to the performance of the ABS.

  • PDF

4륜조향 자율주행로봇의 최적속도에 관한 연구 (A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot)

  • 김미옥;이정한;유완석
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

건설차량용 자동변속기의 변속제어기 개발연구 (A Research on Shifting Controller Development of a Automatic Transmission far Construction Vehicles)

  • 정규홍;이교일
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.234-242
    • /
    • 2002
  • In this research, a transmission control unit was developed for a wheel loader on the basis of 16-bit microcontroller system. The TCU has the basic functions which include shifting control algorithm, actuation of six proportional solenoid valves, signal conditioning for four speed sensors, remote data monitoring capability with RF-module and duty cycle identification system which could identify the duty cycles from PWM signals. In order to design the control system, the overall transmission structure of the wheel loader was investigated and its characteristics of shifting were analyzed in advance. For the purpose of identifying the existing control algorithm and acquire some information about the shifting performance, the shifting experiments were performed for various shifting conditions with the conventional TCU. From the previous work on the conventional TCU, the shifting scheme was designed with the open-loop control which is based on the experimental data only to verify the feasibility of the developing TCU's shilling capability. The experimental results show comparable shifting characteristics to that of conventional TCU though the tests were performed at restricted shilling conditions. Hence, we could have the confidence for the development of the wheel loader automatic transmission TCU and its shifting quality could be improved with the adoption of appropriate feedback control scheme.

전륜구동 전기자동차의 기어비 변경에 따른 구동 특징 민감도 분석 (Sensitivity Analysis on Driving Characteristics According to Change in Gear Ratio of a Front Wheel Drive Electric Vehicle)

  • 손영갑;김정민
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.50-55
    • /
    • 2022
  • Acceleration performance, maximum velocity, urban driving energy consumption, and high-way driving energy consumption are important characteristics of electric vehicle driving. This study analyzes the effect of a gear ratio on these characteristics for a front wheel drive electric vehicle. The normalized sensitivity metric is used to compare the sensitivity of these scaled characteristics to the changes in the gear ratio. The sensitivity analysis results show that the normalized values are 0.95 for maximum velocity, 0.91 for acceleration performance, 0.51 for urban driving energy consumption, and 0.24 for high-way driving energy consumption. Therefore, the maximum velocity was affected the most by the changes in the gear ratio. These results can be used to determine the gear ratio of a front wheel drive electric vehicle to optimize the driving characteristics simultaneously.