• Title/Summary/Keyword: Automotive noise

Search Result 672, Processing Time 0.043 seconds

An Application of the plane wave theory for the analysis of the automobile intake system (자동차 흡기계 해석에서의 평면파 이론 적용)

  • 이장명;임학종;김민진;정병인
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.460-465
    • /
    • 1997
  • In the begining stage of development of a new automobile, decision of appropriate positions and room of resonators is important to NVH engineers. To find optimized positions of resonators of an automotive intake system, numerical approach such as acoustic FEM or BEM and experimental work are possible. However, either method requires many efforts and time to prepare a numerical or a real model. This research demonstrates easy way to design an adequate intake system.

  • PDF

A Study on Application of Vibration Testing Method (진동 시험 기법의 적용에 관한 고찰)

  • Lee, Chang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.587-591
    • /
    • 2012
  • Review of practical vibration test methods those applied in various industrial fields - such as automotive industry, electrics and electronics industry, defense industry and aerospace industry - is described on this paper. Swept sine test, random vibration test and advanced vibration techniques are explained according to their parametric values and also application fields of each test method are suggested by the characteristic of each method. For more proper application of each test method, standardized test specifications should be always reviewed and revised according to the transition of environmental factors.

  • PDF

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

ANALYSIS OF DOPPLERIZED ACCELERATION SIGNALS IN A ROTATING SHAFT BY USING A VOLD-KALMAN ORDER TRACKING FILTER

  • Kook, H.S.;Crane, C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.521-531
    • /
    • 2007
  • Measurement of the vibration transmitted through rotating shafts such as half shafts in vehicles is of interest in applications such as noise transfer analysis and the study of operating deflections. Vibration signals transmitted through a rotating shaft usually include six degree-of-freedom components, thus making the measurement of vibration a challenging task. In the present work, a new measurement method is presented, one that resolves the minimum of only two one-axis accelerometer signals into all components of vibration with reasonable accuracy. The method utilizes the Dopplerized signals obtained from accelerometers attached to a rotating shaft and a Void-Kalman order tracking filter to decompose signals into orders of different vibration components. The new method proposed in the present work is verified by simulated run-up test data and applied to an experimentally obtained data set.

Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines (커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

Stress Analysis for Torsional Spring Box of Radial Dual Mass Flywheel (원판형 이중 질량 플라이휠의 비틀림 스프링 장치의 응력해석에 관한 연구)

  • 최병기;노승훈;남욱희;김광수;최성종;이춘열;채영석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.147-154
    • /
    • 2003
  • Radial Dual Mass Flywheel(RDMF) is designed to reduce torsional vibration and noise occurring in automotive powertrain. In this paper, finite element method is used to evaluate stress level and critical area of the torsional spring box, a major part of RDNF system. In finite element analysis, both static and dynamic loadings are considered and it is found that the most critical spot is the welded zone of spring box. Also, fatigue test is performed and fractured surfaces are examined to find fatigue stress level by experiment.

A Study on Clutch-disc Torsional Characteristic for aTorsional Vibration Reduction at Idling (공회전시 비틀림진동 저감을 위한 클러치 비틀림 특성 연구)

  • 홍동표;정태진;김상수;태신호
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.319-325
    • /
    • 1994
  • The flucturation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the flucturation of the torque of recent light weighted powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by soothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. Computer simulation of the engine- input gear train is a useful investigative tool on studying the torsional characteristics of the clutch-disc. In this paper, a dynamic model for the automotive driveline was developed, and the engine torque and drag torque of the model were evaluated withe experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics when the engine is idling and the clucth-disc torsional characteristics for reducing the torsional vibration has been suggested.

  • PDF

Study on Thermoelastic Instability of Automotive Disc Brakes (자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

An experimental study on valve lash diagnosis using cylinder head vibration signal (실린더 헤드에서의 진동신호를 이용한 밸브간극 진단에 관한 실험적 연구)

  • 석정호;김원진;박윤식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.117-127
    • /
    • 1992
  • In this work, the possibility to diagnose valve lashes of an automotive diesel engine via cylinder head vibration/noise analysis is studied. First of all the measurement signals and conditions are selected after considering which signals and conditions are most suitable to diagonse valve lashes. Both accelerometer and microphone are used to measure cylinder head accelerations and acoustic pressure due to valve impact on cylinder head. The signals are measured in both cranking and engine firing conditions. Finally, it was found that acceleration signal obtained in engine operating condition is the most reliable signal to diagnose the valve lash condition. The valve closing angle and the peak acceleration due to valve close are chosen to analyze the valve lash condition. The measured cylinder head acceleration signals are statistically tested to derive information which are useful to judge the valve lash. In conclusion, it was found that the developed technique can be one of feasible methods to diagnose the valve conditions while the engine is in operation.

  • PDF

Robust Design of Crankshaft (크랭크샤프트 강건 설계)

  • Lee, Seungwoo;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • Finite element analysis along with DOE scheme has been performed to obtain robust design of crankshaft assembly. This study focused on obtaining optimized fillet radius of crankshaft mainly by statistical approach. 27 design cases using 3 factors with 3 levels are constructed by design of experiment. Changes of design factors and noise factor may influence the durability of crankshaft system. General two stages of robust design may enhance the durability of crankshaft model. Increasing crank arm thickness was adopted as a shrink step and change of fillet radius was used as a shift step. By combining these two steps, the stress concentration at the fillet area is reduced and adequate fillet radius is determined for the robust design of crankshaft.