• Title/Summary/Keyword: Automotive manufacturing process

Search Result 757, Processing Time 0.029 seconds

Effect of Changes in Metal Characteristics of Hot-Forged Alloy Steel on Mechanical Properties of an Automotive Automatic Transmission Gear (자동차 자동변속기 기어용 합금강의 열간 단조 성형에 따른 기계적 특성 변화에 관한 연구)

  • Kim, Hwa-Jeong;Kim, Yohng-Jo;Kim, Hyun-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.135-146
    • /
    • 2016
  • This study investigated the effect of the changes in metal characteristics due to the hot forging on SCR420HB applied to ensure the optimal production of the hot-forging ratio on the mechanical properties of an automotive automatic transmission gear. The microstructural changes in the forging ratio were investigated by adjusting the forging range into multiple ranges from alloy steel. This was done in order to set the optimum forging range given the manufacturing process conditions during the hot forging of alloy steel parts with a carbon content of more than 0.8% wt. The effects of the content change in the microstructure on the mechanical properties due to the use of the part were examined.

A Study on the Hydroforming Technology of an Automotive Bumper Rail (자동차용 범퍼레일의 하이드로포밍 기술 연구)

  • 손성만;이문용;이상용
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.561-566
    • /
    • 2000
  • Recently, the hydroforming technology has been recognized as a general technique in manufacturing industry, especially in automotive industry. Hydroforming is applied to increase strength, and to decrease weight, cost and parts. Hydroforming is based on the inflation of, for Instance, a tube, coupled with axial or radial compression and by subsequent expansion and sizing against the die wall. Expansion, axial feeding, calibration are important parameters in this process. In this paper, the effects of various parameters such as internal pressure, axial feeding and friction on hydroforming of automotive bumper rail have been considered.

  • PDF

Design Optimization of Over-slam Bumper for Moving Part Over-travel (무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계)

  • Choi, Yeonwook;Ki, Wonyong;Lee, Jonghyun;Heo, Seung-Jin;Rhie, Chulhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

A Study on the Quantitative Measurement of In-plane Displacement of Carbon Steel for Machine Structures according to Rolling Direction using a dual-beam Shear Interferometer (듀얼 빔 전단간섭계를 이용한 압연방향에 따른 기계구조용 탄소강의 면내 변위 정량적 측정에 대한 연구)

  • Kang, Chan-Geun;Kim, Sang Chae;Kim, Han-Sub;Lee, Hang-Seo;Jung, Hyun-il;Jung, Hyun-Chul;Song, Jae-Geun;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an in-plane deformation measuring system using a dual-beam shear interferometer was constructed to measure the in-plane deformation of the measuring object. The in-plane deformation of the object was quantitatively measured according to the load and surface treatment conditions of the object. We also verified the reliability of the proposed technique by simultaneously performing the technique with an electronic speckle pattern interferometry system (ESPI), which is another laser application measurement technology. Digital shearography directly measures the deformation gradient or strain components and has the advantages of being full-field, noncontact, highly sensitive, and robust. It offers a much higher measurement sensitivity compared with noncoherent measurement methods and is more robust and applicable to in-field tests.

Development of Cold Forging Process of Hollow-type Wheel Nut Wrench for Commercial Vehicles (상용차용 중공형 휠 너트 렌치의 냉간단조 공정 개발)

  • Kim, H.S.;Youn, J.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.493-498
    • /
    • 2012
  • A wheel nut wrench is one of the hand tools used to loosen and tighten lug nuts on automobile wheels and it has generally a solid-type geometry for commercial vehicles. However, the solid-type wheel nut wrenches manufactured by hot forging processes exhibit several drawbacks such as heavy weight and rough surface finish. Thus, many efforts have been devoted to change the part geometry and improve the manufacturing process. For this purpose, the weight of the final product can be reduced drastically using a hollow tube as the initial stock, which can be manufactured by the more economical manufacturing process of cold forging. In this study, the cold forging of a hollow-type wheel nut wrench for commercial vehicles was designed based on the results of fundamental experiments and CAE analyses using the commercial finite element code DEFORM-3D. In addition, cold forging experiments were conducted on a special-purpose forming machine for hollow wheel nut wrenches in order to validate the designed process sequence. As results, it was found that the final products with a weight reduction of 39% and better surface appearance can be manufactured without any defect with the newly designed cold forging process.

Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials (경량화 소재의 반용융 및 주조/단조기술)

  • 강충길;최재찬;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF

Static and Dynamic Analysis of Automotive Steering System (자동차 조향 장치의 정적 및 동적 응력해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.36-40
    • /
    • 2008
  • This study is analyzed by the simulation of automotive steering system. The maximum equivalent stress of $2.2418{\times}109Pa$ and the maximum total displacement of 0.014929m are shown at the universal joint and its lower part respectively. As the minimum cycle of 34.047 is shown at the universal joint in case of fatigue analysis, it is possible to have greatest damage at this part. In case of natural frequency analysis at vibration, its frequency of 47 to 59Hz is occurred generally. The maximum total displacement of 0.5m is shown at handle on the natural frequency of 57 to 58Hz. And the displacement over 2m is shown at the lower part of universal joint on the natural frequency of 58 to 59Hz. As the basis of the simulation analysis of steering system, passenger's comfort of car body can be improved in the design of practical part and the design effect necessary to safe driving can be promoted.

  • PDF

A Study on the Analysis of Thermal Durability due to the Configuration of Mortar (박격포의 형상에 따른 열적 내구성의 해석에 대한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.69-76
    • /
    • 2015
  • This study investigates the thermal efficiency and the efficiency of heat transfer through thermal analysis when the same heat is applied to a mortar frame by firing with various configurations of mortar. As the inside diameter of the mortar increases, the additional material must be reinforced. In comparison with the extent of getting cold due to models, a mortar with the strut under the gun barrel becomes cooler than one with no strut. The thermal deformation at firing becomes different. According to the configuration of mortar and its inside diameter, the extent of getting cold becomes different. This study result can be effectively applied for improving the efficiency of the heat transfer of mortar.

Stress Analysis of Automotive Tire at Contact on Road Surface (노면에 접촉된 자동차 타이어의 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.40-45
    • /
    • 2009
  • This study is analyzed by stress contour of automotive tire at contact on road surface. Maximum equivalent stress as 61200Pa is shown on the lower mid part in case of tire contacted on road surface. As the air pressure of tire increases, maximum total deformation as 5mm is shown on the side part of tire. It can be shown that the side part of tire is unstabilized. There is no load effect on tire at its upper and lower directions. When the moment applied on the side of tire is increased 1.4 times as its value, the value of maximum principal stress is increased 1.4 times. The stress at the tire is in proportion to the moment applied on the its side. The tire tends to incline toward its side by this moment.

  • PDF

A Study on the Configuration of Turbo Charger through Flow Analysis (유동해석을 통한 터보차저 형상 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-38
    • /
    • 2018
  • Recently, the turbo charger has become an important part because it yields little displacement and high power while downsizing the engine's fuel ratio for environmental purposes. In this study, flow analysis was conducted to form the basis of data regarding the best efficiency. The axial displacement was changed from none to 25 mm by controlling the configuration of the turbo charger and the flow analyses were compared with each other. The maximum rate of the outlet of model 1 was 46.36 m/s and the maximum pressure of model 4 was 0.761946 Pa. The maximum flow rate of model 4 was 0.000187650 kg/s. This study's result should aid in the effective design of a turbo charger with high performance.