• 제목/요약/키워드: Automotive electric system

검색결과 377건 처리시간 0.031초

전동식 조향장치용 영구자석형 브러시리스 모터의 타입별 특성 비교 (Characteristic Comparison of Brushless Motor Type for EPS System)

  • 이민환;김일용;이충성
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.53-60
    • /
    • 2012
  • As enforced by the regulation on the improving fuel efficiency and increased the demand on green technology, many interests are focused on electric vehicles and hybrid vehicles. Thus the technology development in electrification of vehicle operation system, including steering and braking field, is actively progressive. Especially electric power steering substitutes for hydraulic power steering rapidly in the market, which is more complex and bigger in packaging volume compared with electric power steering system. The core component in electric power steering system is a motor, which is required to be silent and powerful to guarantee required system performance. Brushless synchronous motors are widely used and many variations of the motors are introduced in the market, while the performance of each type is not well defined or studied for electric power steering system. In this paper, recent developments in brushless synchronous motor are reviewed and compared applying finite element analysis in electromagnetic field. As results, each characteristic of different types of brushless synchronous motors is compared and summarized for optimized selection in electric power steering system.

차량용 이산화탄소 열펌프 시스템의 냉난방 성능 비교평가 (Comparative Evaluation of the Cooling and Heating Performance of a $CO_2$ Heat Pump System for Vehicles)

  • 김성철;김민수
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.126-131
    • /
    • 2009
  • A $CO_2$ heat pump system was designed for both cooling and heating in the cabin of electric vehicles, hybrid vehicles or fuel cell vehicles, In this study, the performance characteristics of the heat pump system without any supplementary heating device were analyzed and the heating performance was compared with the cooling performance for various operating conditions. Experiments were carried out by changing the speed of electric drive compressor, the air flow rate of interior heat exchanger and the air inlet temperature and speed of exterior heat exchanger. Therefore, the cooling/heating capacities and the corresponding COPs are quantified. Also, the heat pump system showed an improved performance for the cooling operation and the heating operation. In this study, the experimental results can be used to evaluate the effect of system design changes on system performance as well as the development of a highly efficient heat pump system.

시뮬레이션 기반 PEM 수전해 시스템 고장 진단 모델 개발 (Development of a Fault Diagnosis Model for PEM Water Electrolysis System Based on Simulation)

  • 구태형;고락길;노현우;서영민;하동우;현대일;한재영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.478-489
    • /
    • 2023
  • In this study, fault diagnosis and detection methods developed to ensure the reliability of polymer electrolyte membrane (PEM) hydrogen electrolysis systems have been proposed. The proposed method consists of model development and data generation of the PEM hydrogen electrolysis system, and data-driven fault diagnosis learning model development. The developed fault diagnosis learning model describes how to detect and classify faults in the sensors and components of the system.

전동 워터펌프의 열유동 특성 해석에 관한 연구 (A Study on Thermo-flow Characteristics Analysis of Electric Water Pump)

  • 김성철;송형근
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.

고분자 전해질 연료전지 시스템의 효율향상을 위한 공기공급 최적화 (Optimization of Air Supply for Increased Polymer Electrolyte Fuel Cell System Efficiency)

  • 주건엽;조기춘;선우명호;최서호
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.44-51
    • /
    • 2011
  • Polymer Electrolyte Fuel Cells (PEFCs) operate in wide-range changes in temperature, humidity, and electric current for automotive applications. In order to operate automotive PEFC efficiently, optimal air supply is required to adjust to these changes. This paper presents an air-supply optimization process that consists of experiments, modeling of the PEFC system, and optimization. The objective is to establish an air supply suitable for the required power for PEFC system and optimized with a Lagrange multiplier. Our simplified PEFC system model is used as a constraint for optimization problem. The result of this paper presents that efficient operation of PEFC system can be achieved by air-supply optimization.

주행거리 연장형 전기자동차의 차량제어 알고리즘 설계 및 운전성 확보를 위한 엔진 발전시스템 제어 (Design of Vehicle Control Algorithm and Engine-generator Control for Drivability of Range-extended Electric Vehicle)

  • 박용국
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.649-659
    • /
    • 2016
  • This paper describes control algorithm and control structure of vehicle control unit for range-extended electric vehicle equipped with engine-generator system, and specially presents methods which determine optimal operating points and decreases a vibration or a shock for operating the engine-generating system. The vehicle control algorithm is consisted of several parts which are sequence control, calculation of wheel demand torque, determination of operating points, and management of operating points and so vehicle controller has be made possible to efficiently manage calibration parameters. The control algorithm is evaluated by driving test modes, launching performance and operating engine-generator system and so on. In conclusion, this paper present methods for extending a mileage, improving a launching performance and reducing vibration or shock when the engine-generating system is starting or is stopping.

차량 동역학 기반 다축 동력 전기 차량의 부하 최적화 로직 개발 (Development of Optimization Logic for Electric Vehicle with Multiple Axle Power System Based on Vehicle Dynamics)

  • 정종렬;신창우;임원식;차석원;장명언
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.8-15
    • /
    • 2013
  • Recently many kinds of electric vehicles have been developed as many governments demand the environmental friendly vehicles. In this paper, study of load optimization for the electric vehicle which has multiple axle power system was conducted. For the analysis of the vehicle which has three or four driving axles, a method based on the geometry and assumptions that considering axles as a spring model and normal forces of the axles are proportional to the displacement of the axles was applied with basic vehicle dynamics. With the developed vehicle analysis technique, algorithm to find the optimal motor operating points was developed. Using this algorithm, it was possible to find the optimization of vehicle load distribution for multiple axles according to the driving cycles. Also, control logic for the vehicle can be developed based on the optimization simulation results.

로봇 조향 기반 EPS HILS 시스템의 개발 및 검증 (Development and Validation of Robot Steered EPS HILS System)

  • 홍태욱;권재준;박기홍;기시우;최상수
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.85-95
    • /
    • 2013
  • As the conventional hydraulic power steering system in the passenger vehicles is being rapidly replaced by EPS (Electric Power Steering) system, performance evaluation of the EPS system has become an important issue in the automotive industries. But the evaluation process takes significant expertise since steering conditions in the test protocols must be implemented with high accuracy. EPS HILS (Hardware-In the-Loop Simulation) system is developed together with robot steering system in this study. Main components of EPS HILS system include: C-EPS hardware, CarSim vehicle model, and road reaction force generation system powered by servo motor. The robot steering system, operated by another servo motor, was combined with EPS HILS system to substitute for steering efforts of human driver. The road reaction force generation system and the robot steering system were carefully validated by using the data obtained from vehicle tests. An on-center handling test was conducted by using EPS HILS system combined with the robot steering system. In the result of this study, robot-steered EPS HILS system developed with its high reliability and no need of skilled driver's, can be widely adopted to evaluate any performance of EPS system.

DEVELOPMENT OF AN ACTIVE FRONT STEERING SYSTEM

  • Kim, S.J.;Kwak, B.H.;Chung, S.J.;Kim, J.G.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.315-320
    • /
    • 2006
  • We have developed an active front steering system(AFS) with a planetary gear train, which can vary the steering gear ratio according to the vehicle speed and improve vehicle stability by superimposing steering angle. We conducted vehicle tests showing that co-operated control of AFS with ESP can improve vehicle stability by direct control of tire slip angle and that steering reaction torque during AFS intervention can be compensated by torque compensation using electric power steering.

열전발전 적용을 위한 가솔린차량의 전력 및 배기열 에너지 분석 연구 (Analysis of the Electric Energy and Exhaust Heat Energy for the Application of Thermo-Electric Generation in a Gasoline Vehicle)

  • 이영재;표영덕;김강출
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.99-105
    • /
    • 2002
  • About 70% of energy input to internal combustion engine is rejected to atmosphere by heat. By utilizing this waste heat, a plenty of energy can be conserved in nationwide. One of possible ways is the thermoelectric generation to utilize engine's waste heat to provide auxiliary electric power. Under th is concept, we have been developing the thermoelectric generation system to replace the alternator by converting the waste heat in the engine's exhaust directly to electricity This system may reduce the shaft horse power of the engine, then improves the vehicle fuel economy and the exhaust emissions. In the present study, the characteristics of the electric energy and exhaust heal energy in city and highway mode driving conditions are analysed by using a gasoline passenger car. These results would be used to determine the optimum design parameters of the thermoelectric generation system.