• Title/Summary/Keyword: Automotive electric system

Search Result 376, Processing Time 0.024 seconds

Computational Design of Battery System for Automotive Applications (전기자동차 배터리 시스템 개발을 위한 전산설계기술)

  • Jung, Seunghun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.37-40
    • /
    • 2020
  • Automotive battery system consists of various components such as battery cells, mechanical structures, cooling system, and control system. Recently, various computational technologies are required to develop an automotive battery system. Physics-based cell modeling is used for designing a new battery cell by conducting optimization of material selection and composition in electrodes. Structural analysis plays an important role in designing a protective system of battery system from mechanical shock and vibration. Thermal modeling is used in development of thermal management system to maintain the temperature of battery cells in safe range. Finally, vehicle simulation is conducted to validate the performance of electric vehicle with the developed battery system.

Control Logic Using Torque Map for a Column-Type Electric Power Steering System (토크맵을 이용한 칼럼형 전기식 동력조향 시스템의 제어로직)

  • 김지훈;송재복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.186-193
    • /
    • 2000
  • EPS(Electric Power Steering) systems have many advantages over traditional hydraulic power steering systems in space efficiency engine efficiency and environmental compatibility. In this paper an EPS system control logic using a torque map is proposed. The main function of the EPS system is to reduce the steering torque exerted by a driver by assist of an electric motor. Vehcile speed steering torque and steering wheel angle are measured and fed back to the EPS control system where appropriate assist torque is generated to assist the operator's steering effort. Another capability of the EPS system for easy adaptation to different steering feels via simple tuning is demonstrated by the experiments. It will be also verified that the EPS system can also improve damping and return performance of the steering wheel by control of the assist motor.

  • PDF

ANALYSIS OF PLANETARY GEAR HYBRID POWERTRAIN SYSTEM PART 1: INPUT SPLIT SYSTEM

  • Yang, H.;Cho, S.;Kim, N.;Lim, W.;Cha, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.771-780
    • /
    • 2007
  • In recent studies, various types of multi mode electric variable transmissions of hybrid electric vehicles have been proposed. Multi mode electric variable transmission consists of two or more different types of planetary gear hybrid powertrain system(PGHP), which can change its power flow type by means of clutches for improving transmission efficiencies. Generally, the power flows can be classified into three different types such as input split, output split and compound split. In this study, we analyzed power transmission characteristics of the possible six input split systems, and found the suitable system for single or multi mode hybrid powertrain. The input split system used in PRIUS is identified as a best system for single mode, and moreover we identified some suitable systems for dual mode.

Development of Shift-By-Wire System for an Automatic Transmission Equipped Vehicle (자동변속기장착 차량의 Shift-By-Wire 시스템 개발)

  • Kim, Jung-Yun;Yim, Chung-Hyuk;Lim, Won-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.41-46
    • /
    • 2007
  • This article deals with the design and prototyping of Shift-By-Wire system for an automatic transmission equipped vehicle. In order to manipulate the shifting action electronically, Shift-By-Wire system consists of an electronic shift lever, an electric shift actuator and position sensors. The shift lever is designed to transform the driver's shifting command into an electric signal; it includes the position sensor using non-contact type hall sensor and an additional shifting switch acting as Tip-tronic. For the design of an electric shifting actuator, we investigated the stroke angles and shifting efforts of the manual control lever in each shifting section. And the position sensor of the shifting actuator is designed by using a potentiometer with an optical encoder. Finally the prototype of Shift-By-Wire system was built in a conventional 2.4L class SUV vehicle, and we performed road tests in order to verify its performance.

A study of driving simulation considering the various working modes of electric tractor (전기트랙터의 다양한 작업 환경을 고려한 주행 시뮬레이션에 대한 연구)

  • Yoo, Ilhoon;Kim, Byeongwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5357-5365
    • /
    • 2013
  • In this paper, we propose that a model based design for a electric tractor system by using ASM(Automotive Simulation Models). Before developing a realistic electric tractor, it is essential that defining the capacities of power sources and optimizing the parameters of electric tractor. In additionally, because the electric tractor must have not only driving function but also working function, two PMSM are used at electric tractor. ASM which is based on simulink and Carsim were used to design a electric system and powertrain of electric tractor. For verifying the electric tractor system, we compared the design parameters such as max power, state of charge, drive distance, velocity which were carried out by the simulation and experimental method. The predicted results by the development model were in good agreement with the simulation results. According to simulation of tractor, it is possible to arrange the advanced research of dynamical characteristic of tractor and present the guidelines for the electrical driving system.

A Study on Development of Electric Motor for High Voltage Automotive System (자동차 고전압 장치용 전동 모터 개발에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • A lot of conventional automotive components driven by mechanical power source are being replaced with electrical ones to comply with the demands of market and customer, therefore the amount of electric energy used in a vehicle will be increased continuously. The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. This paper present the design of the BLDC motor for electric air-conditioner in 42V system and compare with the characteristics of several type BLDC motor.

A Driving System Design of an Electric Motor Scooter (전동 스쿠터 동력장치 설계)

  • Kim, Moon-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • This paper proposes a new design method for electric scooter which can maximize the power efficiency at the given driving condition. The proposed method is designed with the electric and mechanical parameters and driving dynamics. These values are extracted from the dynamic and mathematical equations of the scooter. For validation, numerical simulation results are presented in this paper. As a result, the scooter achieved over 80% efficiency at 360 rpm at 1.42kw load. It is clear that the proposed method was verified through a 1.42kw numerical model.

Steady State Performance Analysis of Five-mode Hybrid Power Transmission Systems (5-모드 하이브리드 동력전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Kim, Nam-Woong;Choi, Wan-Mug;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • The core of the automotive industry's strategy to handle the climate change can be explained as the development and distribution of the vehicles with high fuel efficiencies and low emission. Clean Diesel, hydrogen fuel cell, electric, and especially hybrid power-train vehicles have been actively studied. This paper dynamically analyzes the performance of a hybrid system's five driving modes. The research subject consists of one engine, two electric motors, two simple planetary gears, and one compound planetary gears with five clutches. To define the steady state equation of the system, interaction formulas of five driving modes are introduced with motion variables and torque variables. These formulas are then used to analyze the speeds, torques, and power flows of each mode.

Modeling of Hybride Electric Vehicle Drivetrain and Development of Simulation Program (하이브리드 전기차량 동력부의 모델링 및 성능평가 프로그램 제작)

  • 김도형;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • This paper describes a hybrid dynamic system(HDS) modeling method and result for the drivertrain of a parallel hybrid electric vehicle(PHEV) which consists of a gasoline engine, an electric machine, and a continuous variable transmission (CVT) and proposes a drivetrain control system. The control system has an engine controller, a motor controller, a CVT controller and a supervisory controller for the coordination of all system. The controller keep the speed of engine wheel and the output torque within the optimal operation range based on the experimental data. We also developed a MATLAB/SIMULINK program for the performance simulation of PHEV drivetrain model and controllers and compared the simulation result with the experiment result in the recent literatures.

  • PDF