• Title/Summary/Keyword: Automotive door

Search Result 130, Processing Time 0.022 seconds

Stamping Analyses of Laser Welded Door Inner and Die Design (레이저 용접 도어 인너의 성형해석과 금형설계)

  • 김헌영;신용승;김관희;조원석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • Computer simulations and test trials are carried out to get the optimal conditions about the stamping die design of the tailor laser welded automotive door inner. Firstly, the stamping process including gravity deflection, bead calibration, binder wrap, forming and spring back, are analyzed by the computer simulation. The results of simulation shows good correspondance with those of test trial under the same conditions. The variables of parametric study which will be investigated in the simulation and test trials, are determined form the results of the first run. The formability under the various conditions is evaluated, which are the initial postion of blank, blank holding force, corner radius and the shape of drawbead. Finally, well controled sound product without fracture, wrinkling and excessive weldline movement is obtained.

  • PDF

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Third Report) : Application to Environment-Conscious Automotive Side-Door Assembly (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제3보) : 환경문제를 고려한 자동차 사이드 도어 어셈블리에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.138-144
    • /
    • 2011
  • The design flexibility and robustness have become key factors to handle various sources of uncertainties at the early phase of design. Even though designers are uncertain about which single values to specify, they usually have a preference for certain values over others. In the first and second reports of a four-part paper, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple vehicle side-door impact beam design problem. This report presents the applicability of the proposed design approach to the large-scale multi-objective design optimization with a successful implementation of real vehicle side-door structure design.

Field Try-out of Tailored Door Inner Panel (테일러드 도어인너 패널의 현장 트라이아웃)

  • 이종문;김상주;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.193-199
    • /
    • 2001
  • Forming more than two parts of sheet metal in a single stamping operation lowers production costs, reduces weight, and heightens dimensional accuracy. The tailored blank (TB) is a laser-welded or mash-seam-welded sheet metal with different thicknesses, different strengths, or different coatings. Recently, automotive manufacturers have been interested in tailored blanks because of their desire to improve the rigidity, weight reduction, crash durability, and cost savings. Therefore the application to auto-bodies has increased. However, as tailored blanks do not behave like un-welded blanks in press forming operations, stamping engineers no longer rely on conventional forming techniques. Field try-outs are very important manufacturing processes for an economic die-making. In the field try-outs, the rounded geometries of tool and the drawbead shape and size in die face are generally modified when the forming defects can not be removed by the adjustment of forming process parameters. In this study, the field try-outs of tailored door inner panel are introduced and evaluated. The behaviours of laser tailored blank associated with different thickness combinations in the forming process of door inner panel are described focusing on terms of experimental investigations on the formability.

  • PDF

Development of Door Outer Panel using High Strength Steel Sheet for Improving Dent Resistance (내덴트성 향상을 위한 고강도 도어 외판 개발)

  • Kim, I.S.;Kim, T.J.;Jung, Y.I.;Yoon, C.S.;Lim, J.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.254-259
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the eighteen cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the optimal improvement of dent resistance.

Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate (자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가)

  • Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • The fiber metal laminate is a type of hybrid materials laminated thin metallic sheets with fiber reinforced plastic sheets. The laminate has been researched or applied in automotive and aerospace industries due to their outstanding impact absorbing performance in view of light weight aspect. Specially, the replacement of side-impact beam as the fiber reinforced plastic has been researched actively. The objective of this paper is the primitive investigation in the development of side-door impact beam using the fiber metal laminate. First, the three-point bending simulations were conducted to decide the shape of impact beam using the numerical analysis. Next, two cases impact beam (pure DP 980 and fiber metal laminate) were installed in the side-door, and then the bending tests (according to FMVSS 214S) were simulated using the numerical analysis. It is noted that the side-door impact beam can be replaced with the fiber metal laminate sufficiently based on the numerical analysis results.

Telematics standardization based on Java and services (Telematics 표준화 개발과 Java 기반의 글로벌 서비스 기술)

  • Kim, Sung-Yoon;Lee, Eun-Bok;Kim, Hoo-Jong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.401-403
    • /
    • 2007
  • ⇒ 초록(영문) 입력자 : This document defines JSR298 Telematics API for Java ME. The main purpose of JSR298 is to be able to provide automotive telematics services through use of this specification on embedded devices that are using Java ME platform. The goal is to standardize specification in order to provide automotive telematics services using embedded devices with Java ME as their base platform. This specification defines methods for controlling and obtaining diagnostic information and conditions on various components built in to the vehicle. Therefore, this document will provide specifications required for controlling various equipments built into the vehicles as well as obtaining diagnostic information on these components and vehicle conditions. Automotive components are defined as equipments that are accessible for drivers including airbag, door, window, and brake. This specification is applicable to telematics-specific automotive terminals as well as other various portable devices including cellular phones and PDAs.

  • PDF

Development of a Inspection System for Automotive Part (자동차 부품 누락 방지를 위한 자동 선별 시스템)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.756-760
    • /
    • 2017
  • Meeting the growing demand deadlines, reducing the production cost and upgrading the quality control measurements are the reasons why the automotive part manufacturers are venturing into automation. Attaining these objectives is impossible with human inspection for many reasons. Accordingly, the introduction of inspection system purposely for door hinge bracket inspection is presented in this study as an alternative for human inspection. This proposal is designed to meet the demands, features and specifications of door hinge bracket manufacturing companies in striving for increased throughput of better quality. To improve demerits of this manual operation, inspection system is introduced. As the inspection algorithm, template matching algorithm is applied to distinguish the articles of good quality and the poorly made articles. Through the verification test of the inspection process algorithm and the similarity metric matching algorithm, the detection accuracy was 98%, and it was applied to the production site to contribute to the improvement of the productivity due to the decrease of the defective product.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용)

  • Nahm, Yoon-Eui;Inoue, Masato;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

A Study for the Screen Door Motor System Driving Stiffness of Dynamic Load Condition (스크린 도어 모터 시스템의 동하중 상태 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • The initial urban railway was only required to perform its role as means of transportation. As the time of staying in an underground platform was extended, it has been faced with the issues of environmental improvement as a living space. Therefore, the sliding automatic door, which is the basis of the screen door, is used widely for large distribution stores, hospitals, restaurants, and public offices for customers' convenience and as a convenient method to control access. Therefore, screen doors are required for the purpose of customers' convenience, securing safety, establishing pleasant station buildings, and energy savings. It would be also necessary to develop the optimal design technology for a screen door system through the design of element parts and to ensure reliability. Therefore, this paper calculated, interpreted, and verified the theoretical weight of the composition parts to verify the design drive hardness of the motor for screen doors necessary for the safety of subways.