• Title/Summary/Keyword: Automotive body part

Search Result 90, Processing Time 0.032 seconds

Development of High Strength Steel Body by Hot Stamping (핫스탬핑에 의한 고강도 차체 부품 개발)

  • Lee, D.H.;Kim, T.J.;Lim, J.D.;Lim, H.J.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2009
  • Quenchable boron steel is a new type of high strength steel to reduce the weight of automobiles and maintain the safety conditions. Quenchable blanks can be hot-stamped and hardened in a water-cooled tool to achieve high strength. In this paper, new alloy for hot stamping is designed based on requirement of mechanical properties and two types of surface coating are investigated in viewpoints of oxidization and exfoliation. An automotive part of center pillar is manufactured by hot-stamping using Al-Si coated sheet. The performance of developed part is compared by static compression test and side impact crash test.

Virtual Test Framework for Smith Squat Exercise Based on Integrated Product-Human Model (제품과 인체의 통합 모델을 바탕으로 한 스미스 스쿼트 운동의 가상 시험 프레임워크)

  • Lee, Haerin;Jung, Moonki;Lee, Sang Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.691-701
    • /
    • 2017
  • The barbell squat is a fundamental physical exercise for strengthening the lower body and core muscles. It is an integral part of training and conditioning programs in sports, rehabilitation, and fitness. In this paper, we proposed a virtual test framework for squat exercises using a Smith machine to simulate joint torques and muscle forces, based on an integrated product-human model and motion synthesis algorithms. We built a muscular skeletal human model with boundary conditions modeling the interactions between the human body and a machine or the ground. To validate the model, EMG, external forces, and squat motions were captured through physical experiments by varying the foot position. A regression-based motion synthesis algorithm was developed based on the captured squat motions to generate a new motion for a given foot position. The proposed approach is expected to reduce the need for physical experiments in the development of training programs.

Aerodynamic acoustics of automotive weather strip protuberance (풍절소음 저감을 위한 웨더스트립 돌출부 형상연구)

  • Kim, Tae-Hoo;Lee, Gye-Ho;Jeon, Seung-Gyeong;Hwang, Jung-Ho;Kim, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2546-2551
    • /
    • 2007
  • Weather Strip(W/S) is a rubber part to proof water, sound and dust for opening and shutting devices including vehicle doors. And it requires high dimension precision and durability to proof water, noise, vibration and etc. But ironically it itself makes some wind noise because of some protuberance with glasses. The air flow analysis of door part of vehicle makes it possible to calculate and find out the cause of wind noise. In previous analysis, we focus on the numerical air flow analysis of the automobile side part. We do 2D-C.F.D first and 3D second. Through simulations, we can calculate the amount of sound pressure level at the glass run and find out the effects of glass run to make wind noise. Finally we can improve shape of glass run to reduce wind noise although it is small amounts of sound pressure reduction compared with total vehicle noise level.

  • PDF

Simulation Analysis on Impact of Automotive Body (차체의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Min, Byoung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.477-482
    • /
    • 2009
  • This study analyzes the result with dynamic simulation about deformation according to time when a car impacts bollard. These results are shown as followings. The maximum deformation is shown at the lower part of front grass in case of the impact of front or passenger seat but this deformation is shown at the lower part of rear bumper in case of double impact. The maximum equivalent stress is shown at the upper part by the side grass of driver seat at the elapsed time of 0.00075 second after impact in case of the impact of front or passenger seat but this deformation is shown at the front bonnet at the elapsed time of 0.004 second after the additional impact in case of double impact. The maximum total deformation or equivalent stress is shown nearly same in case of the impact of front or passenger seat. But the value of this deformation or equivalent stress in case of the impact of front or passenger seat is shown with 2 times or more than 17% respectively as this value in case of double impact.

  • PDF

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

A study on weight reduction of bracket using CAE program (CAE 프로그램을 이용한 브래킷 경량화에 관한 연구)

  • Kang, Hyung-Suk;Han, Bong-Suk;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Shin, Bong-Cheol;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2018
  • Recently The automotive industry is trying to increase the energy efficiency by reducing the weight of the car body and engine components as a way to achieve high energy efficiency. In particular, the reduction of the weight of the vehicle through the weight reduction of the vehicle body has the advantage that the fuel consumption and the output can be improved. But at the same time, there is the disadvantage that the strength becomes weak due to the reduction of the material thickness. Therefore, in order to overcome these disadvantages, materials with high strength according to the unit thickness have been actively developed, and researches for applying them have also been increasing. In this study, we will investigate the application of cold rolled steel sheet, which is a lightweight material, to a horn bracket that secures a installed in an automobile engine room. The horn bracket secures the horn on the car engine and is bolted to the outer wall of the engine. The momentum is acted on the bracket due to the distance between the bolt fastening part and the car horn installed on the bracket end side. Therefore, the body part of the bracket is more likely to be destroyed by the influence of the continuous stress. In this paper, design optimization for weight reduction and strength enhancement was performed to solve this problem, and possibility of applying the rolled steel sheet material as lightweight material by tensile test and fabrication was confirmed.

Driving Concept Development for Elderly Drivers (고령 운전자를 위한 안전 시스템 개발 연구)

  • Jung, Sebin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Driving-related injuries associated with elderly drivers are on the rise, although the overall rate of driving-related injuries has decreased. To determine the causes of this trend, we researched existing vehicle systems that use different sensors and signals to promote safe driving. We found that although the systems alert drivers to potential collisions and assist them in finding a location easily, they were created by people who rarely use the systems in their daily lives. For the most part, they're not created by people with driving difficulties caused by health problems, which in turn often afflict the elderly. To address this issue, we analyzed the drawbacks of the current systems and used a focus group of people with body conditions that have declined due to age to discover the problems they encounter while driving. With the focus group, we used diverse research activities, such as observation and interview to demonstrate how new system concepts could be developed for the elderly. Finally, we propose that adequate system concepts for the elderly would improve driving safety and provide a more enjoyable driving environment for this population.

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

A Convergent Study on Flow Analysis at the Surface due to Shape of Aircraft (항공기의 형상에 따른 표면에서의 유동해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.151-155
    • /
    • 2020
  • In this study, the velocity distribution and pressure of the flow with the shape of the aircraft were analyzed to investigate its flight performance. In order to compare the flow rate and its pressure applied on the surface of airplane each other, models A and B have the blunt and sharp shapes as the distinctive shapes of airplanes. It can be inferred that the lower the maximum speed of the flow around the airplane, the less resistance the navigation produces, the less fuel consumption, which is more efficient for the sharp model B than the blunt model A. As the result of this study, the wing area and the head part of the body should be designed to withstand the pressure greater than the body. It is shown that the sharp model B can withstand more pressure due to flow than the blunt model A.

Study of the Shape of Car Body Affecting Flow Resistance of Air Flowing Near Car (자동차 주위에 흐르는 공기의 유동 저항에 미치는 차체의 형상 연구)

  • Lee, Hyun-Chang;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4707-4712
    • /
    • 2014
  • Considerable fuel in cars is consumed by air resistance. The flow resistance against the air stream was analyzed by flow analysis near the passenger car body. In this study, the models were used were cars available on the real market. Two velocities entered into inlet plane of flow were 80 km/h and 110 km/h using the flow analysis of CFX. As the study method, the velocity of air flow near the car and the pressure on the rear part of car body were investigated at the driving of car. The shapes of the study models were models 1 and 2, and the flow streams were four cases of 1, 2, 3, and 4. In case 1 among the four cases, the maximum pressure ($1.017{\times}10^5Pa$) on the rear part was highest and the maximum velocity (43.81m/s) of air flow near car body was fastest. The air drag force in the case of high speed (110km/h) driving a passenger car was higher than that of a normal driving speed (80km/h). The drag force at wide section area of the car body becomes higher than the narrow section area. The shape of the car body can be effectively designed to reduce the air resistance using the study results of this analysis.