• 제목/요약/키워드: Automotive body panel

검색결과 57건 처리시간 0.022초

자동차 패널 드로잉 금형 설계를 위한 3 차원 CAD 시스템의 개발 (Development of a Three-Dimensional CAD System for Design of Drawing Dies for Automotive Panels)

  • 이상화;이상헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1424-1428
    • /
    • 2005
  • This paper describes a dedicated three-dimensional CAD system for design of drawing dies for automotive body panels. Since solid die models are useful not only for simulations for design verification, but also for NC tool path generation to machine dies and their Styrofoam patterns, 3-D CAD systems have been introduced in the tooling shop of automotive manufacturers. However, the work to build solid models requires a lot of time and effort if the designer uses only the general modeling capabilities of commercial 3-D CAD systems. To solve this problem, we customized a 3-D CAD system for the drawing die design. The system provides not only 3-D design capabilities, but also standard part libraries to enhance design productivity. By introducing this system, the drawing dies can be designed more rapidly in the 3-D space, and their solid data can be directly transferred to CAM tools for NC tool path generation and simulation tools for virtual manufacturing

  • PDF

마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스 (Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet)

  • 장동환
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

SMOOTHING METHOD OF AUTO-BODY PART CONTOUR FOR THE DIE-FACE DESIGN SYSTEM BASED ON THE CAE PLATFORM

  • Gong, K.J.;Guo, W.;Hu, P.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.853-858
    • /
    • 2006
  • The method of die-face design based on the CAE platform for automobile panels can fast modify the die addendum. In contrast with the process of the die-face design based on the CAD platform, there are some special steps for the die-face design based on the CAE platform. The most obvious difference is that the auto-body part contour needs smoothing arlier than the design of addendum surfaces does. It is helpful to improve the design quality of addendum surface. In spite of extensive researches on the smoothing technique, here is still dearth of the published solutions about smoothing the part contour with additional surface. This paper attempts to analyze the difficulties and provides practical solutions. Main results include the algorithm to calculate the segments needing to be smoothed on boundary, the strategy to create the smoothing curve and the procedure of surface generation. The relevant function modules for parametric design are developed. A few examples and suggestions for future work conclude the paper.

Hydro-forming 공정을 위한 동적-외연적 유한요소해석 (A Dynamic-explicit Finite Element Analysis for Hydro-forming Process)

  • 정동원;황재신
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

Optimal design of the floor panel for an automotive platform under uncertainty of the vehicle length

  • Lahijani, Abdolah Tavakoli;Shojaeefard, M.H.;Khalkhali, Abolfazl
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.91-98
    • /
    • 2018
  • Length of a vehicle is an important variation to generate different variants of an automotive platform. This parameter is usually adjusted by embedding dimensional flexibility into different components of the Body in White (BIW) including the floor pan. Due to future uncertainties, it is not necessarily possible to define certain values of wheelbase for the future products of a platform. This work is performed to add flexibility into the design process of a length-variable floor pan. By means of this analysis, the cost and time consuming process of optimization is not necessary to be performed for designing the different variants of a product family. Stiffness and mass of the floor pan are two important functional requirements of this component which directly affect the occupant comfort, dynamic characteristics, fuel economy and environmental protection of the vehicle. A combination of Genetic algorithm, GMDH-type of artificial neural networks and TOPSIS methods is used to optimally design the floor pan associated with arbitrary length of the variant in the defined system range. The correlation between the optimal results shows that for a constant mass of the floor pan, the first natural frequency decreases by increasing the length of this component.

특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구 (A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.

자동차 외판용 BH강판에서 성형성과 소부경화성에 미치는 조질압연의 영향 (Effect of Temper Rolling on Formability and Baking Hardenability in Baking Hardenable Steels for Auto Body Outer Panel)

  • 고흥석;문만빈;신철수;오현운
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.37-44
    • /
    • 2004
  • Automotive company has been endeavoring to develop high strength steels to get higher fuel efficiency of car since the oil shortage in 1970s and to cope with the recent strict environmental regulation. Outer panels(Hood, Roof, Door and Fender) for automobile require higher dent resistance. Bake-hardenable(BH) steels are known as useful for their high deep drawability and high dent resistance. Recently BH steels are increasingly adapted for outer panel use due to their high drawability and high dent resistance. In this study effect of temper rolling on formability (textures, r value) and bake hardenability is investigated fur improving characteristic of bake-hardenable steels.

  • PDF

내덴트성 향상을 위한 고강도 도어 외판 개발 (Development of Door Outer Panel using High Strength Steel Sheet for Improving Dent Resistance)

  • 김익수;김태정;정연일;윤치상;임종대
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.254-259
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the eighteen cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the optimal improvement of dent resistance.

무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계 (Design Optimization of Over-slam Bumper for Moving Part Over-travel)

  • 최연욱;기원용;이종현;허승진;이철홍
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술 (Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology)

  • 장인성;조용준;박현성;소득영
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.