• Title/Summary/Keyword: Automotive body

Search Result 756, Processing Time 0.038 seconds

Vibration analysis on engine mounts of FF-body (FF차체의 엔진지지계에서 진동해석)

  • 김찬묵
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.25-33
    • /
    • 1987
  • 최근 저연비 및 차실내거주성향상의 관점에서 볼 때 소형차의 대부분이 FR에서 FF방식으로 바뀌며 차체의 경량화가 적극적으로 추진되고 있다. 본문에서는 수평식엔진 FF차(4기통, 4cycle엔진)에 관해 공회전시 진동과 급가속시의 쇼크진동 (shock vibration)을 중심으로 차체진동을 시험, 해석하고 이에 관련한 각각의 요소들을 총괄적으로 검토함으로써 차체나 엔진지지부의 합리적인 설계를 하는데 필요한 것들을 검토하였다.

  • PDF

Vibration analysis of a passenger vehicle with a floxible car body (차체의 강성을 고려한 승용차의 진동 해석)

  • Park, Tae Won
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.46-56
    • /
    • 1991
  • 자동차가 고르지 않은 도로를 주행할시 차체의 각 부분에 일어나는 진동을 고려하기 위해서는 차체 각 부분의 탄성효과를 고려하여야 만족할 만한 결과를 얻을 수 있다. 이 논문에서는 범용 유한요소해석 프로그램과 범용 기구해석 프로그램을 이용하여 자동차의 주행시 일어나는 차체 내의 진동에 대하여 연구하였다. 예제로는 승용차를 이용하였고 차체의 유한요소해석을 한후 그 결과를 범용 기구해석 프로그램에 이용하여 기구해석에 가장 많이 쓰이는 강체 모델의 결과와 탄성을 고려한 모델의 결과를 비교하였다.

  • PDF

Automotive Welding Techniques in the Future (미래의 자동차 용접기술)

  • 박황호
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.24-35
    • /
    • 1997
  • 본 고에서는 자동차 차체(BIW; Body In White)조립라인을 중심으로 각종 용접경향 및 접합법을 살펴보고 용접품질 향상과 비용절감을 목적으로 적용되는 미래의 자동차 용접기술에 대하여 기술하고자 한다.

  • PDF

Analysis of Equal Sensation Curves for the Korean People about Vertical Whole-Body Vibration (앉은 자세 수직축 전신 진동에 대한 한국인의 등감각 곡선 분석)

  • Kim, Kun-Woo;Kim, Min-Seok;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2010
  • In the field of 'Human Vibration', it has been interested subjects to make equal sensation curves related to translational and rotational direction of whole-body, hand-transmitted and head-transmitted vibration, etc. When we consider the vibration of a vehicle, the main factor is vertical whole-body vibration. Until now, most of equal sensation curves used to derive frequency weighting function had been made using Western people. However, because of the inherent differences (for example, characteristic and shape of body parts, muscular and cellular tissue) between the Western people and the Oriental people, equal sensation curves based on Oriental people might be required. Also, the weight differences between the samples which consist of average-weighted and over-weighted group might cause the difference of equal sensation curves. So, in this study, 20 male Korean people were used to find equal sensation curves subject to vertical whole-body vibration on seated posture. Among 20 males, an over weighted group consisted of 10 male persons and an average weighted group was the others. Integrating and analyzing the data of two groups, some of non-parametric tests such as 'The Wilcoxon Signed Rank Test' and 'The Mann Whitney U test' were used.

Forming of Automotive Outer Body Panel using High Strength Steel Sheet for Improving Dent Resistance (차체 외판 부품의 내덴트성 향상을 위한 고강도 강판의 성형에 관한 연구)

  • Kim, T.J.;Kim, I.S.;Jung, Y.I.;Yoon, C.S.;Lim, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.322-325
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the thirty six cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the best improvement of dent resistance.

  • PDF

Investigations on Improvement of Vehicle Design Feature on Idle Shake with Automatic Transmission (자동변속기 장착 차량의 아이들 셰이크 진동 성능 개선 대책에 대한 고찰)

  • Choi, Cheon;Suh, Myung-Won;Kim, Young-Gin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-120
    • /
    • 2000
  • In order to improve the vibration characteristics of mid sized passenger car automatic transmission at idle experimental and theoretical studies have been carried out. Idle shake in "D" range occurs by various reasons such as characteristics of body bending resonance between subsystems and engine mounts etc. Using full vehicle finite element analyses and modal tests we introduce the way to reduce the idle shake in the early design stage. It shows that the exciting forces are the 2nd order torque and force of engine. A powertrain system modes in "D" range are entirely effected by the additional boundary conditions of drive line. As a result the frequencies of subsystems are arranged to be lined up at the idle frequency range in order to avoid the resonances with subsystems To reduce the idle shake mounts of radiator are tuned to act as a dynamic damper to 1st bending frequency of the body. In addition a hydraulic mount which is optimized by Phase Shift Method is applied to the rear engine mount.e rear engine mount.

  • PDF

Development of a Computer Model of a Large-sized Truck Considering the Frame as a Flexible Body (프레임을 유연체로 고려한 대형트럭 컴퓨터 모델의 개발)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper develops a computer model for estimating the handling of a cabover type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using ADAMS. A shock absorber, a rubber bush, and a leaf spring aunt a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC/PATRAN. A mode analysis is performed with the frame model using MSC/NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double lane change test is performed with an actual vehicle. In the double lane change, lateral acceleration, yaw rate, and roll angle are measured. Those test results are compared with the simulation results.

The Modelling of vehicle and Applying the Optimal Design Values of Engine Rubber Mounts (차량의 모델링과 엔진마운트 최적설계값의 적용)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.129-143
    • /
    • 1998
  • The vibrations of steering wheel are required to be reduced for convenient ride quality and good controllability. This phenomenon, vibration of steering wheel, is occured by interaction with suspension system, steering system, vehicle body, engine/transmission and tire complicately. But reviewing the current research activities, most researches are performed for the vibration analysis of steering wheel with a simple model, and mot easy to be applied to the variation of each component element connected with steering system as well as that of the steering system. In this study, suspension system and steering system are modelled by the T.L.H. coordinate system which is usually used by a passenger car maker. Also, rigid body motions of engine and elastic motions of vehicle body in the previous study are considered. Derive the equation of motion in 29 d.o.f. and the vibration of steering wheel is analyzed numerically and verify the midelling of steering system by comparison with test results for real car. And then, the optimal design values of the engine mount system obtained from the previous study are applied to the verified steering system model and investigate the effects of various engine mount design values on the vibration of steering wheel.

  • PDF