• Title/Summary/Keyword: Automotive Roof

Search Result 43, Processing Time 0.022 seconds

An Effect of Roof-Fairing and Deflector System on the Reduction of Aerodynamic Drag of a Heavy-Duty Truck (대형트럭용 루프 훼어링과 디프렉트의 공기저항력 저감 특성에 관한 연구)

  • Kim, Chul-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.194-201
    • /
    • 2006
  • Roof-fairing and deflector system have been used on heavy-duty trucks to minimize aerodynamic drag force not only for driving stability of the truck but also for energy saving by reducing the required driving power of the vehicle. In this study, a numerical simulation was carried out to see aerodynamic effect of the drag reducing device on the model vehicle. Drag and lift force generated on the five different models of the drag reducing system were calculated and compared them each other to see which type of device is efficient on the reduction of driving power of the vehicles quantitatively. An experiment has been done to see airflow characteristics on the model vehicles. Airflow patterns around the model vehicles were visualized by smoke generation method to compare the complexity of airflow around drag reducing device. From the results, the deflector systems(Model 5,6) were revealed as a better device for reduction of aerodynamic drag than the roof-fairing systems(Model 2,3,4) on the heavy-duty truck and it can be expected that over 10% of brake power of an engine can be saved on a tractor-trailer by the aerodynamic drag reducing device at normal speed range($80km/h{\sim}$).

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum (핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계)

  • M. G. Kim;J. H. Lee;D. C. Ko
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.

An Optimal Placement of passive Constrained Layer Damping Treatment for Vibration Suppression of Automotive Roof (차량루프의 진동저감을 위한 수동구속감쇠처리의 위치 최적화)

  • Lee, Ki-Hwa;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.349-353
    • /
    • 2004
  • A study on optimal placement of constrained layer damping treatment for vibration control of automotive panels is presented. The effectiveness of damping treatment depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatment. From the equivalent modeling technique, it is found that the best damping performance occurs as the viscoelstic patch is placed by means of the modal strain energy method of bare structural panels to identify flexible regions, which in turn facilitates optimizations of damping treatment with respect to location and size. Different configurations of partially applied damping layer treatment have been analyzed for their effectiveness in realizing maximum system damping with minimum mass of the applied damping material. Moreover, simulated frequency response function of the automotive roof with and without damping treatments are compared, which show the benefits of applying damping treatment. Finally, the optimized damping treatment configuration is validated by comparing the locations and the size of the treatment with that of an experimental modal test conducted on roof compartment.

  • PDF

A Convergence Study on the Flow near Vehicle by the Configuration of Roof Box (루프 박스의 형상별 차량 주위에서의 유동에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.99-105
    • /
    • 2019
  • In this study, the flow analysis around vehicle was carried out on various kinds of roof box models installed at the roof of vehicle. Through the analysis of fluid flow and pressure, we investigated which model was more suitable for driving. The four types of models were designed with their respective shapes of models 1, ${\beta}$, ${\delta}$ and ${\gamma}$, and the driving speed of car was set as 20 m/s. It was confirmed that the pressure for model ${\beta}$ became greatest compared to other models. And model ${\delta}$ has the lowest pressure among all models of roof boxes by installing a canoe with the structure for cable type. As the design data with the durability of roof box obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the car body at real life.

Study of Analyzing Roof Panel Using Static Implicit Finite Element Method (정적-내연적 유한요소법을 이용한 Roof 판넬 해석에 관한 연구)

  • Ahn Hyun-Gil;Jung Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.78-85
    • /
    • 2005
  • The static implicit finite element method is applied effectively to analyze total roof panel stamping processes, which include the forming stage. complicated and abnormal Large size roof panel was analyzed by using commercial program called AutoForm. Analysis results examining possibility and validity of the AutoForm software and the factor study are presented. Further, the simulated results for the total roof panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

An Estimation of Comfort on the Automobile Driver Seat Korean Anthropometric Experiment (한국인 인체측정 실험에 의한 자동차 운전석의 안락감 평가)

  • 이영신;이석기;박세진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.61-72
    • /
    • 1996
  • In this paper, the driver seat comfort of eight automobiles was studied. The joint angles and anthropometric data of eleven subjects sitting on the seating buck were investigated using the instrument devices such as scale, goniometer, vernier calipers, protractor, Martin set. The joint angles of the most comfort posture were found by experiment and compared with previous studies. The anthropometric data of Korean(1992 year surveys) and American(1970∼1974 year) were applied to evaluate the driver seat layout of Korean automobile. The joint angles of the most comfort posture for eleven subjects were obtained with experimental results. The joint angles were agreed with reference angles. The driver seat layout was not suited to seat length and acceleratorseatpan forward distance in 5 percentiles female, pedal separation and seatpan-roof height in 95 percentiles male. Korean automobiles were not suited to seatpan length and steering wheelseatpan clearance, floor-roof height for American 95 percentiles male. The driver anthropometric dimensions were more suitable to middle size than small size automobiles.

  • PDF

Low-Frequency Vibration Analysis of a Center Pillar-to-Roof Rail Joint : Modelling Technique and Problems (센터 필라-루프 레일 조인트의 저진동 해석 : 모델링 기법과 문제점)

  • 김윤영;강정훈;송상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The modelling techniques of a center pillar-to-roof rail joint for low frequency vibration analysis are examined and some fundamental problems are addressed. To develop a simplified beam-spring model of the joint, the present work is focused on 1) practical shell modelling techniques and 2) joint spring stiffness estimation methods a practical model-updating method to match the calculated natural frequencies to the experimentally determine ones is proposed, particularly focusing on spot welding modelling. In joint spring modelling, the results from the model with one joint spring are compared with those from the model with three coupled springs. Finally, some fundamental problems in beam-spring modelling are addressed.

  • PDF

Flow Analysis on the Outside of Automotive Body (차체 외부에서의 유동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The air resistance about automotive body is studied by the flow analysis in this study. Maximum air flow velocity is shown with 28 to 30 m/s on the upper roof of automotive body. The air flow becomes most regular at automotive body model 3 but the model of 2 or 3 becomes irregular in comparison with the model 1. The maximum air resistance pressure is shown with 413 to 420 Pa at the front bumper of automotive body. The flow velocity at inlet or middle plane of automotive body is shown as the contour same with the model of 1, 2, or 3. But the velocity at outlet plane at model 1 is shown as the contour different with the model of 2 or 3.

APPLICATION OF VISCOELASTIC DAMPING FOR PASSIVE VIBRATION CONTROL IN AUTOMOTIVE ROOF USING EQUIVALENT PROPERTIES

  • LEE K. H.;KIM C. M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.607-613
    • /
    • 2005
  • In this study, a simplified approach to modeling the dynamic characteristics of passive constrained layer damping treatments in finite element models is presented. The basic concept is to represent multi-layered composite structures using an equivalent single layer. The equivalent properties are obtained by using the RKU (Ross, Kerwin and Ungar) equations. Comparisons are given between results obtained by the dynamic analysis of the simple models implemented in MSC/NASTRAN and by test measurements. Surface damping treatments are applied to automotive panels as well as simple structures. Using the proposed equivalent modeling technique, higher computational efficiency for the damped composite structures has been obtained.