• Title/Summary/Keyword: Automotive Maintenance

Search Result 111, Processing Time 0.022 seconds

Development of National Competency Standards for Automotive Maintenance (자동차정비직무를 위한 국가직무능력표준(NCS) 개발)

  • Jie, Myoung-Seok;Noh, Hi-Kui;Han, Young-Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 2014
  • Automotive field specialist developed National Competency Standards for Automotive Maintenance to apply for the education and evaluation of automotive maintenance. National Competency Standards scope and system for Automotive Maintenance has been developed and provided Performance Criterion, knowledge, skill, attitude, and evaluation methods for each item. Also it has provided vocational basic knowledge level and qualification frame for automotive maintenance.

Automatic Assembly Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators

  • Kyoungkwan Ahn;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1633-1642
    • /
    • 2002
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of the typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (linear vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN is generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

A Study on Development of the Reliability Evaluation System for VVVF Urban Transit (VVVF 도시철도 차량의 신뢰성 평가 시스템 개발에 관한 연구)

  • Bae Chul-Ho;Kim Sung-Bin;Lee Ho-Yong;Chang Suk-Hwa;Suh Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-18
    • /
    • 2005
  • Over the past twenty years, the maintenance system has been developed and its importance has been increased. For the effective maintenance of the urban transit, we have developed the maintenance system based on the concept of RCM(Reliability Centered Maintenance). RCM analysis is a systematic approach to developing a cost-effective maintenance strategy based on the various components's reliability of the system in question. It is performed according to process that includes the following steps; definition of function and functional failures of the systems, construction of RB D(Reliability Block Diagram), performance of FMEA(Failure Modes & Effects Analysis) and calculation of the reliability index. The final process of RCM is to determine appropriate failure maintenance strategies. This paper aims to define the procedure of maintenace based on the concept of RCM for urban transit. The key for a successful maintenance system is an automated scheduling to the maximum extent possible and timely executions. The developed system issues maintenance plan and repair request based on analyzed data and maintenance experience.

Analysis of an Automotive Fire Case that a Fire Broke out during Driving Immediately after DPF Cleaning (DPF 클리닝 직후에 주행 중 발생한 승용차화재 사례의 분석)

  • Lee, Euipyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.556-565
    • /
    • 2016
  • As a result of the enforced control of emission, many devices, including the diesel particulate filter, have been installed in diesel cars to reduce the emission of particulate matters. In this study, a car fire case has been investigated and analyzed. A car fire broke out after the vehicle traveled a distance of 1.4 km from a car service center. The car was provided with DPF cleaning when the DPF warning light came on. After being dismantled in the engine room, the car's engine and gearbox were investigated. The findings showed that the rear part of the DPF metal case was melted and punctured, while the honeycomb filter of the DPF was damaged. The car fire was caused by an overheated DPF associated with inaccurate maintenance practice. Therefore, the responsibility of the fire rested on the car service center that performed the DPF cleaning.

Investigation of Technological Trends in Automotive Fault Prognostic System (자동차 고장예지시스템의 기술동향 연구)

  • Ismail, Azianti;Jung, Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • Since the basic built-in-test, prognostic health management (PHM) has evolved into more sophisticated and complex systems with advanced warning and failure detection devices. Aerospace and military systems, manufacturing equipment, structural monitoring, automotive electronic systems and telecommunication systems are examples of fields in which PHM has been fully utilized. Nowadays, the automotive electronic system has become more sophisticated and increasingly dependent on accurate sensors and reliable microprocessors to perform vehicle control functions which help to detect faults and to predict the remaining useful life of automotive parts. As the complication of automotive system increases, the need for intelligent PHM becomes more significant. Given enormous potential to be developed lays ahead, this paper presents findings and discussions on the trends of automotive PHM research with the expectation to offer opportunity for further improving the current technologies and methods to be applied into more advanced applications.

Experimental Study on Spot Weld and Plug Weld of Automotive Body Panel (자동차 차체 패널의 점용접 및 플러그용접 특성에 대한 실험적 분석)

  • Kwon, Jongho;Kim, Janghoon;Lee, Yongwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.709-715
    • /
    • 2016
  • This paper presents a comparison of an experimental study on spot and plug welding of an automotive body panel. Spot welding is a common joining technology used in automotive body panel assembly. In automotive body repair, however, plug welding is widely used due to its technical simplicity and cost benefit. Some researchers have focused on the use of spot welding in the manufacturing process, but there has been very little research done with respect to the engineering analysis of the plug welding process. In this study, two kinds of specimens are considered to compare the difference of failure strength between spot weld and plug weld: normal tension and shear tension. The experimental results show, in both normal tension and shear tension, that spot welding has higher failure strength than plug welding. In addition, plug welding is more vulnerable to shear tension than normal tension. This study can be applied to further studies on practical optimization for maintenance and repair of automotive body panels.

Technology Trend of Gasoline Electronic Control Engine (가솔린 전자제어 엔진의 기술동향)

  • Jang, Kyung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.1-8
    • /
    • 2000
  • Automotive electronics as we know it today encompasses a wide variety of devices and systems. Key to them all, and those yet to come. is the ability to sense and measure accurately automotive control parameters. In other words, sensors and actuators are the heart of any automotive electronics application. The important of sensors and actuators cannot be overemphasized. The future growth of automotive electronics is arguably more dependent on sufficiently accurate and low-cost sensors and actuators than on computers, controls, displays, and other technologies. Without them, all of controls system - engine. transmission. cruise, braking, traction, suspension, steering, lighting, windshield wipers, air conditioner/hearter - would not be possible. Those controls, of course, are key to car operation and they have made cars over the years more drivable, safe, and reliable. In this lecture, the principle and future trends of electronic control gasoline engine will be discuss.

  • PDF

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.