• Title/Summary/Keyword: Automotive Heat Exchanger

Search Result 138, Processing Time 0.021 seconds

A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method (미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법)

  • Lee, Sang-Hyuk;Kim, Joo-Han;Lee, Na-Ri;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

A Study on Electronically Controlled R-134a Heat Pump System for a Fuel Cell Electric Vehicle (FCEV) (연료전지 자동차용 R-134a 전동식 히트펌프 시스템 개발에 관한 연구)

  • Lee, Jun-Kyoung;Lee, Dong-Hyuk;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.124-132
    • /
    • 2007
  • The main objective of this work is to investigate the characteristics of a heat pump system for fuel cell electric vehicle (FCEV). The present heat pump system adopts an electrically driven compressor running with R134a and uses the heat from the fuel cell stack as the heat source for the exterior heat exchanger. The experimental work has been done with various operating conditions such as different compressor speeds, fuel cell stack coolant temperatures and flow rates. The heating capacity was measured to be from 4 to 10 kW at $-20^{\circ}C$ ambient temperature, and the outlet temperature of interior heat exchanger was up to $70^{\circ}C$. After 30 seconds from start-up, the system reached a steady state and the heating capacity of 6.8 kW was acquired, and after 90 seconds, the air outlet temperature of interior heat exchanger became $35^{\circ}C$.

Performance Test of a Fan Coil with an Oval-Type Heat Exchanger (타원관 열교환기를 적용한 팬코일 성능 시험)

  • Yoon, Jeadong;Lee, Seunghyun;Sung, Jeayong;Lee, Myeong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.67-71
    • /
    • 2014
  • In this study, a fan coil unit with an oval-type heat exchanger has been developed. The performance of the present fan coil unit has been investigated, by comparison with the previous fan coil unit with a circular-type heat exchanger. For the fan coil unit with circular- and oval-type heat exchangers, the heat flux and pressure loss through the heat exchangers were measured at standard operating conditions. In addition, the wind speeds exhausted from the fan coil units were compared, for the same fan motor operation. The experimental results show that the average wind speed of the oval-type heat exchanger is 20 percent higher than that of the circular-type heat exchanger. The heat flux in the oval-type heat exchanger is enhanced by 40% or more, over the circular-type heat exchanger.

Effect of Exhaust Heat Exchanger on Catalytic Converter Temperature in an SI Engine (가솔린 엔진의 배기 열교환기가 촉매 온도에 미치는 영향에 관한 연구)

  • 이석환;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2004
  • Close-coupled catalyst (CCC) can reduce the engine cold-start emissions by utilizing the energy in the exhaust gas. However, in case the engine is operated at high engine speed and load condition, the catalytic converter may be damaged and eventually deactivated by thermal aging. Excess fuel is sometimes supplied intentionally to lower the exhaust gas temperature avoiding the thermal aging. This sacrifices the fuel economy and exhaust emissions. This paper describes the results of an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of close-coupled catalytic converter. The exhaust heat exchanger successfully decreased the exhaust gas temperature, which eliminated the requirement of fuel enrichment under high load conditions. However, the cooling of the exhaust gas through the heat exchanger may cause the deterioration of exhaust emissions at cold start due to the increment of catalyst light-off time.

Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine (가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화)

  • Lee, Seok-Hwan;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

Heat Transfer Experiment and Analysis to Predict the Efficiency of Heat Exchanger for Deep Geothermal System (심부지열 용 동축 열교환기 성능예측을 위한 열전달 실험 및 해석)

  • Jung, Kuk-Jin;Jeong, Yoon-Seong;Park, Jun Su;Lee, Dong Hyun
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The Heat exchanger for deep geothermal system is very important to enhance the efficiency of the system. The co-axial heat exchanger is used due to the limitation of digging space. The heat transfer on the external surface of outer pipe should be high to receive a large amount of heat from the ground. However, the inner pipe should be insulated to reduce the heat loss and increase the temperature of discharge water. This study made experiment apparatus to describe the co-axial heat exchanger and measure the heat transfer coefficients on the internal and external surface. And the pin-fin was designed and fixed on the internal surface to increase the efficiency of heat exchanger. Finally, we calculated the temperature of discharge water using the heat transfer circuit of co-axial heat exchanger and heat transfer coefficient which from experimental results. The water temperature was reached the ground temperature at -500 m and following the ground temperature. When the water return to the ground surface, the water temperature was decreased due to heat loss. As the pin-fin case, the heat transfer coefficient on the internal surface was decreased by 30% and it mean that the pin-fin help to insulate the inner pipe. However, the discharge water temperature did not change although pin-fin fixed on the inner pipe.

Study on Development of High Performance Evaporator for Automotive Air Conditioner (자동차 공조용 증발기의 고성능화에 관한 연구)

  • Kang, J.K.;Kim, K.H.;Park, T.Y.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1995
  • The object of the present study is to develop a high performance evaporator for automotive air conditioner. The experiment has been conducted on evaporative heat transfer coefficient inside a plate type heat exchanger with a sharp 180-degree turn flow. The test plates have different formed surface, cross-ribbed channel and elliptical-ribbed channel. Also experimental study has been performed to determine optimal design in elliptical-ribbed plate heat exchanger with different turn clearance. In addition to the above experiments, refrigerant behavior and surface temperature distribution in the plate heat exchanger were observed using color thermoviewer(infrared thermometer). In this experiment, working fluid was used R-12 and test conditions were as follows : (1) saturation pressure of $2.116kg/cm^2$, (2) mass fluxes of 40 to $70kg/m^2s$, (3) heat fluxes of 4,500 to $7,300W/m^2$, (4) inlet quality of 0.1 to 0.7. The results indicated that the evaporative heat transfer coefficient of an elliptical-ribbed plate heat exchanger was higher than that of cross-ribbed plate heat exchanger. Also optimal turn clearance in an elliptical-ribbed plate heat exchanger was determined.

  • PDF

Heat Transfer Characteristics of Fin-Tube Heat Exchanger using Two-Port Tube of Small Inner Diameter by Mechanical Expansion (연결세경관을 이용한 휜관형 열교환기의 기계확관에 의한 전열특성)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.428-433
    • /
    • 2016
  • The fin and tube heat exchanger using a two-port tube has in air-conditioner heat exchanger because heat transfer performance. This study investigates the feasibility of a fin and tube heat exchanger using two-port copper tube by mechanical expansion. The optimum size of the tube-expanding bullet for the heat exchanger using two-port tube was through numerical calculation. The heat exchanger using a two-port tube was fabricated by mechanical expansion, and the heat exchanger performance was evaluated condensation and evaporation experiments. Compared to the heat exchanger of a conventional circular tube, the pressure drop per unit length of the heat exchanger with a two-port tube decreased. Compared to the heat exchanger using a conventional circular tube, the overall heat transfer coefficient of heat exchanger with a two-port tube increased up to 13% in the case of condensation, and up to 25% in the case of evaporation. The two-port tube heat exchanger outperforms conventional heat exchanger for air conditioner with a inner grooved circular tube.

Effects of Pulsating Flow on Evaporation of Refrigerant in a Plate Heat Exchanger (판형 열교환기에서 맥동유동이 냉매의 증발에 미치는 영향)

  • Kang Byung-Ha;Jeong Il-Kwon;Kim Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.627-634
    • /
    • 2006
  • Evaporation heat transfer characteristics by pulsating flow in a plate heat exchanger have been investigated experimentally in this study. R-l34a is evaporated by receiving heat from the hot water in the plate heat exchanger. The pulsating frequency in refrigerant side of the plate heat exchanger is varied in the range of 5-25 Hz. The operating pressure of R-l34a and mass flux of hot water are also varied 0.6-0.9 MPa and $45-105 kg/m^2s$, respectively. The experimental results indicate that evaporation heat transfer coefficient of pulsating flow is improved up to 6.3% compared with that of the steady flow at 10 Hz and $G_w=45 kg/m^2s$. It is also found that the evaporation heat transfer enhancement ratio is decreased with an increase in mass flux of hot water, and the evaporation heat transfer enhancement is little influenced by operating pressure of R-l34a.

An Experimental Study on the Heat Exchange Performance at Various EGR Cooler Types (EGR 쿨러 Type에 따른 열교환성능에 관한 실험적 연구)

  • Shon, Jungwook;Woo, Seungchul;Park, Jongwook;Chun, Taesoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.608-614
    • /
    • 2015
  • Nitrogen oxide(NOx) emission reductions are required to meet the strict emission regulations for environmental protection. Most of the Exhaust Gas Recirculation(EGR) system applied to a diesel engine can relatively decrease the NOx at a low cost, but it has a disadvantage in that the PM generation is promoted due to the hot intake air temperature. Thus, high heat exchange efficiency of the EGR cooler is required for an effective removal of NOx. In this study, heat exchange efficiency for various types of heat exchangers used in EGR cooler was measured under same conditions, and determined best heat exchange performance shape depending on type of heat exchanger.