• 제목/요약/키워드: Automotive Fuel Cell

검색결과 168건 처리시간 0.026초

FUEL CELL ELECTRIC VEHICLES: RECENT ADVANCES AND CHALLENGES - REVIEW

  • Yang, W.C.
    • International Journal of Automotive Technology
    • /
    • 제1권1호
    • /
    • pp.9-16
    • /
    • 2000
  • The growing concerns on environmental protection have been constantly demanding cleaner and more energy efficient vehicles without compromising any conveniences provided by the conventional vehicles. The recent significant advances in proton-exchange-membrane (PEM) fuel cell technology have shown the possibility of developing such vehicles powered by fuel cells. Several prototype fuel cell electric vehicles (FCEV) have been already developed by several major automotive manufactures, and all of the favorable features have been demonstrated in the public roads. FCEV is essentially a zero emission vehicle and allows to overcome the range limitation of the current battery electric vehicles. Being motivated by the laboratory and field demonstrations of the fuel cell technologies, variety of fuel cell alliances between fuel cell developers, automotive manufactures, petroleum companies and government agencies have been formed to expedite the realization of commercially viable FCEV. However, there still remain major issues that need to be overcome before it can be fully accepted by consumers. This paper describes the current fuel cell vehicle development status and the staggering challenges for the successful introduction of consumer acceptable FCEVS.

  • PDF

연료전지 수소 재순환 시스템의 유동해석 (Flow analysis of the Hydrogen Recirculation System for Fuel Cells)

  • 김재춘;이용택;정진택;김용찬;황인철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.759-764
    • /
    • 2005
  • In this paper, numerical analysis of hydrogen recycle system has been conducted in order to enhance the efficiency of automotive fuel cell. Generally, the excess hydrogen is provided in the automotive fuel cell. Since the non-reaction hydrogen reduces automotive fuel cell efficiency, reuse of the non-reaction hydrogen can be helpful to improve the fuel cell performance. In case of PEM FC, the water vapor is provided to hydrogen from the cathode so that the mixture experiences phase change depending on the changes of pressure and temperature. The internal flow of the mixture in the hydrogen recirculation system of fuel cell was investigated for real flow conditions. The variation of performance, properties and mass fractions of mixture, hydrogen and water-vapor were investigated. This study was performed based on 80KW level automotive fuel cell's recycling system.

  • PDF

연료전지 차량 주행시 스택의 진동 특성 연구 (A Study on the Vibratory Characteristics of the Stack in Fuel Cell Vehicle at Driving Condition)

  • 주형준;김기훈;박재용
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.50-55
    • /
    • 2010
  • In recent years, the development of fuel cell vehicles has further accelerated because of environmental problem and petroleum resources shortage. The fuel cell vehicles have the stack which converts fuel to electricity. The stack is usually mounted by bush to isolate the vibration of chassis and body. This paper analyzed the vibratory characteristics of stack and chassis, body system. The wheel forces of fuel cell vehicle are measured to estimate the road load data. And the paths of vibration from wheel to stack are analyzed by CAE. According to the test and CAE results, the improvement of stack vibration are evaluated.

연료전지 자동차의 주행성능 예측을 위한 전기자동차 및 연료전지의 성능실험과 수학적 모델링 (Measurements and Numerical Analysis of Electric Cart and Fuel Cell to Estimate Operating Characteristic of FCEV)

  • 조용석;김득상;안석종
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.65-72
    • /
    • 2006
  • In new generation vehicle technologies, a fuel cell vehicle becomes more important, by virtue of their emission merits. In addition, a fuel cell is considered as a major source to generate the electricity for vehicles in near future. This paper focuses on modeling of not only an electric vehicle and but also a fuel cell vehicle to estimate performances. And an EV cart is manufactured to verify the modeling. Speed, voltage, and current of the vehicle and modeling are compared to estimate them at acceleration test and driving mode test. The estimations are also compared with the data of the Ballard Nexa fuel cell stack. In order to investigate a fuel cell based vehicle, motor and fuel cell models are integrated in a electric vehicle model. The characteristics of individual components are also integrated. Calculated fuel cell equations show good agreements with test results. In the fuel cell vehicle simulation, maximum speed and hydrogen fuel consumption are estimated. Even though there is no experimental data from vehicle tests, the vehicle simulation showed physically-acceptable vehicle characteristics.

자동차용 가솔린의 경비행기 엔진 적합성에 관한 실험적 연구 (Experimental Study of Automotive Gasolines in a Light Aircraft Engine)

  • 성낙원
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.108-117
    • /
    • 1995
  • The primary purpose of this extensive test effort was to observe real-time operational performance characteristics associated with automotive grade fuel utilized by piston engine powered light aviation aircraft. In fulfillment of this effort, baseline engine operations were established with 100LL aviation grade fuel followed by four blends of automotive grade fuel. A comprehensive sea-level-static test cell/flight test data collection and evaluation effort were conducted to review operational characteristics of a carbureted light aircraft piston engine as related to fuel volatility, fuel temperature, and fuel system pressure. Presented herein are results, data, and conclusions drawn from test cell engine operation as well as flight test operation on 100LL aviation grade and four blends of automotive grade fuel.

  • PDF

PEM 연료전지 시스템 모델링-자동차용 연료전지 시스템의 주요 작동 변수 변경에 따른 시스템 효율 민감도 분석 (Modeling of PEM Fuel Cell System-Sensitivity Analysis of System Efficiency with Different Main Operating Parameters of Automotive Fuel Cell System)

  • 김한상;강병길;원권상
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.401-410
    • /
    • 2019
  • The operating conditions greatly impact the efficiency and performance of polymer electrolyte membrane (PEM) fuel cell systems and must be properly managed to ensure better performance and efficiency. In particular, small variations in operating conditions interact with each other and affect the performance and efficiency of PEM fuel cell systems. Thus, a systematic study is needed to understand how small changes in operating conditions affect the system performance and efficiency. In this paper, an automotive fuel cell system (including cell stack and balance of plant [BOP]) with a turbo-blower was modeled using MATLAB/Simulink platform and the sensitivity analyses of main operating parameters were performed using the developed system model. Effects of small variations in four main parameters (stack temperature, cathode air stoichiometry, cathode pressure, and cathode relative humidity) on the system efficiency were investigated. The results show that cathode pressure has the greatest potential impact on the sensitivity of fuel cell system efficiency. It is expected that this study can be used as a basic guidance to understand the importance of achieving accurate control of the fuel cell operating conditions for the robust operation of automotive PEM fuel cell systems.

개발 비용 감소를 위한 연료전지용 이젝터의 설계 및 성능평가 (Design and Performance Test for a Fuel Cell Ejector to Reduce its Development Cost)

  • 김민진;김동하;유상필;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.279-285
    • /
    • 2006
  • Recirculation for the unreacted fuel is necessary to improve the overall efficiency of the fuel cell system and to prevent fuel starvation since the fuel cell for a vehicle application is a closed system. In case of the automotive fuel cell, the ejector which does not require any parasitic power is good for the performance improvement and easy operation. It is essential to design the customized ejector due to the lack of the commercial ejector corresponding to the operating conditions of the fuel cell systems. In this study, the design methodology for the ejector customized to an automotive fuel cell is proposed. The model based sensitivity analysis prevents the time-consuming redesign and reduces the cost of developing ejector. As a result, the customized ejector to meet the desired performance within overall operating range has developed for the PEMFC automotive system.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.