• Title/Summary/Keyword: Automotive Fuel

Search Result 1,718, Processing Time 0.034 seconds

A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(II) (Startability and Durability) (디젤기관의 대체연료 이용에 관한 연구(II) (시동성 및 내구성 문제))

  • 오영택;정규조;촌산정
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.48-53
    • /
    • 1988
  • In a previous report, the properties of vegetable oils as diesel fuel substitutes were investigated and the basic load performance of a diesel engine was examined using vegetable oil. The results show that despite of the long term chain hydrocarbon structure and large droplet size due to high viscosity, vegetable oils have good basic performance and exhaust emissions, however they cause serious problems as carbon deposit buildup, they have poor durability, and also poor thermal efficiency. In this paper, the startability and engine durability with long term operation was tested by physical methods for reducing viscosity when vegetable oil was used as compared against diesel fuel. The results obtained in this investigation may be stated as follows; (1) There is no problem in startability when vegetable oil was used as diesel fuel substitutes as far as fuel temperature is higher than 30.deg. C (2) The carbon deposits were most extensive at lower loads and lower engine speeds, and deposit buildup more heavily on the cooler parts of the combustion chamber wall. (3) Blends with 25% diesel fuel and 20v-% ethanol are effective in reducing the carbon deposit buildups. (4) Significant improvement in carbon deposit and piston ring stick can be obtained by heating fuel(200.deg.).

  • PDF

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

Characteristics of High Pressure Bio-diesel Fuel Spray (바이오 디젤 연료의 고압 분무 특성)

  • Hong, Chang-Ho;Choi, Wook;Choi, Byung-Chul;Lee, Gi-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • Spray characteristics of conventional diesel fuel and bio-diesel fuel(methyl-ester of soybean oil) were compared, in terms of spray tip penetration and spray angle, by using a commercial high pressure common rail injection system for light-duty DI Diesel engines. The experiments were carried out under the non-evaporating condition at ambient density(8.8, $15.6 kg/\textrm{m}^3$) and injection pressure(75, 135 MPa). The experimental method was based on a laser sheet scattering technique. Spray tip penetrations of bio-diesel fuel were longer, on the whole, than those of conventional diesel fuel, except for lower injection pressure(75 MPa) under lower ambient density$(8.8 kg/\textrm{m}^3)$. But spray near angle and spray far angle of bio-diesel fuel were smaller than those of conventional diesel fuel, implying spray angle is related to the growth rate of spray tip penetration. The experimental results of spray tip penetration agreed well with the calculated values by the Wakuri et al.'s correlation based on the momentum theory.

Study of HSDI Diesel Engine Development for Low Fuel Consumption (HSDI 디젤 엔진 연비 저감 개발에 대한 연구)

  • Chun, Je-Rok;Yu, Jun;Yoon, Kum-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

Combustion Characteristics of Dimethyl Ether (DME) and Diesel Fuel Using a Common-rail Fuel Injection System (커먼레일 분사장치를 이용한 Dimethyl Ether와 디젤연료의 연소특성)

  • Choi, Wook;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-37
    • /
    • 2004
  • The combustion and emission characteristics of a direct injection CI engine fuelled with DME(Dimethyl Ether) and diesel fuel were compared at idle engine speed(800 rpm) with various injection parameters. An optical single cylinder diesel engine equipped with a common-rail fuel injection system was constructed to investigate combustion processes of DME and diesel fuel. The combustion images were recorded with a high-speed video camera system. The results demonstrated that the DME-fuelled engine was superior to the conventional diesel engine in terms of engine performance and emissions. The optimal injection timing of DME was located around IDC(Top Dead Center), which was roughly same as that of diesel fuel. As the injection timing was advanced much earlier than TDC, NOx (Nitric Oxides) level increased considerably. NOx emission of DME was equal or a little higher than that for diesel fuel at the same injection pressure and timing because of higher evaporation characteristics of DME. Throughout all experimental conditions, DME did not produce any measurable smoke level.

Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions (플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰)

  • kim, Hansang;Min, Kyoungdoug
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.

Steady State Performance Analysis of the Multi-mode Power Transmission Systems Equipped on Passenger Car (승용차용 다중모드 동력 전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Park, Yun-Kyoung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.364-371
    • /
    • 2013
  • Because of the increases in international oil prices and the level of global warming, the automotive industry has much interest in developing green cars with high fuel efficiencies. In addition, researchers in Korea are actively responding to high oil prices and $CO_2$ emission regulations in many ways. One example is, the multi-mode hybrid system, which is being studied to improve its performance. Because a multi-mode hybrid system is able to overcome the weaknesses of a system that uses simple planetary gears, excellent fuel efficiency and driving performances are the key features of the system. This paper analyzes the driving performance of the power-train system of GM-2MT70, which consists of one engine, two electric motors, one simple planetary gear, one double planetary gear, two clutches, and two brakes. The driving performance of the system's steady state is analyzed using performance modeling. The dynamic performance is analyzed using Matlab Simulink.

Design Process of Light-weighted Fuel Cell Vehicle Body Frame (경량 연료전지 차체프레임 설계 프로세스)

  • Kim, Ki-Tae;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.114-121
    • /
    • 2010
  • This paper presents a design process of light-weighted fuel cell vehicle (FCV) frame to meet design target of natural frequency in early design stage. At first, using validated FE model for the current design, thickness optimization was carried out. Next. optimization process, comprised of beam model size optimization, shell model design and shell model thickness optimization, was investigated for two frame types. In addition, in order to ensure hydrogen tanks safety against rear impact load, structural collapse characteristics was estimated for the rear frame model finally produced from the previous optimization process and, with the target of equal collapse characteristics to the current design model, structural modification with small weight increase was studied through static structural collapse analyses. The same attempt was applied to the front side frame. The results explain that the proposed process enables to design light-weighted frames with high structural performance in early stage.

Experimental Studies on the Stack Cooling Performance Using a $CO_2$ Air Conditioning System in Fuel Cell Vehicles (이산화탄소 에어컨 시스템을 이용한 연료전지 자동차의 스택 냉각성능에 대한 실험적 연구)

  • Kim, Sung-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • The $CO_2$ air conditioning system installed in fuel cell vehicles could be used either for stack cooling or for cabin cooling, and thus was used for the stack cooling when additional stack heat release was required over a fixed radiator capacity for high power generation. This study investigated the performance of the stack cooling system using $CO_2$ air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed for the stack cooling system using an air conditioner and compared with the conventional radiator cooling system with/without cabin cooling. The heat release of the stack cooling system with the aid of $CO_2$ air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, the heat release of the stack cooling system using $CO_2$ air conditioner increased more by 7% than that of the conventional radiator cooling system without cabin cooling.