• 제목/요약/키워드: Automotive Fuel

검색결과 1,714건 처리시간 0.021초

고속도로 주행 시 연료차단 기능을 활용한 $CO_2$ 배출량 감축에 대한 실험적 연구 (An Experimental Study on Reduction of $CO_2$ Exhausted Emission by using Fuel-cut Function of Vehicles)

  • 고광호;정승현;유인균;이수형;김제원
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.86-92
    • /
    • 2010
  • The fuel is not injected when the driver doesn't push acceleration pedal of a vehicle with engine speed higher than about 1,500rpm above mid vehicle speed range. This is called "fuel-cut function" and almost every modern vehicle is equipped with this function. This is activated on downhill part of a highway most often. Therefore the vehicle-exhausted $CO_2$ can be zero in this downhill part if the driver could recognize this part of highway. We compared the vehicle-exhausted $CO_2$ emission when using fuel-cut function with the $CO_2$ mass when without using this function in this study. We found that the $CO_2$ emission reduced with fuel-cut function and measured the reduction rate of vehicle-exhausted $CO_2$ mass with this test results. The exhausted $CO_2$ mass of a passenger car(2,000cc engine volume) is reduced by 4% with this function used. This $CO_2$ reduction effect can be achieved if the downhill part of a highway is painted with a specific color. And this road painting can be included in the highway road rehabilitation policy.

Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구 (Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling)

  • 정동원;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.

차량용 PEMFC 동적 모델을 이용한 시스템 부하 응답 특성 (System Response of Automotive PEMFC with Dynamic Modeling under Load Change)

  • 한재영;김성수;유상석
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.43-50
    • /
    • 2013
  • The stringent emission regulation and future shortage of fossil fuel motivate the research of alternative powertrain. In this study, a system of proton exchange membrane fuel cell has been modeled to analyze the performance of the fuel cell system for automotive application. The model is composed of the fuel cell stack, air compressor, humidifier, and intercooler, and hydrogen supply which are implemented by using the Matlab/Simulink(R). Fuel cell stack model is empirical model but the water transport model is included so that the system performance can be predicted over various humidity conditions. On the other hand, the model of air compressor is composed of motor, static air compressor, and some manifolds so that the motor dynamics and manifold dynamics can be investigated. Since the model is concentrated on the strategic operation of compressor to reduce the power consumption, other balance of components (BOP) are modeled to be static components. Since the air compressor model is empirical model which is based on curve fitting of experiments, the stack model is validated with the commercial software and the experiments. The dynamics of air compressor is investigated over unit change of system load. The results shows that the power consumption of air compressor is about 12% to 25% of stack gross power and dynamic response should be reduced to optimize the system operation.

배터리 충전상태가 경유자동차 에너지소비효율에 미치는 영향 연구 (A Study about Impact of Battery SOC on Fuel Economy of Conventional Diesel Vehicle)

  • 김성우;김기호;하종한;권석주;서영호
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.480-486
    • /
    • 2016
  • Manufacturers have been applying several technologies that can improve the fuel economy of their cars. The regulated voltage control(RVC) system, is one of those technologies being used in passenger cars. In RVC, the voltage of an alternator is controlled depending on the electrical load demand or battery SOC, although each manufacturer differs from another in terms of detail. RVC can reduce the load of an alternator by consuming the stored energy of a battery and simultaneously generate energy. In this paper, a diesel passenger car equipped with an RVC system was tested under FTP-75 and HWFET modes to evaluate fuel economy as their initial battery SOC(100, 90, 80 and 60 %). The test results showed that the initial SOC affects fuel economy only under the FTP-75 mode. FTP-75 fuel economy of the 60% SOC was 13.2 % lower than the 100 % SOC. Also, the simultaneous consumption of the two energy sources did not appear in 60 % SOC.

Effects of the Intake Valve Timing and the Injection Timing for a Miller Cycle Engine

  • Han, Sung-Bin;Chang, Yong-Hoon;Choi, Gyeung-Ho;Chung, Yon-Jong;Poompipatpong, Chedthawut;Koetniyom, Saiprasit
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.32-38
    • /
    • 2010
  • The objective of the research was to study the effects a Miller cycle. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. Miller Cycle without supercharging can increase brake thermal efficiency 1.08% and reduce brake specific fuel consumption 4.58%. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency.

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.