• Title/Summary/Keyword: Automotive Exhaust

Search Result 886, Processing Time 0.023 seconds

An Experimental Study for Reducing the Exhaust Hydrocarbon Emission at SI Engine Using Timed Secondary Air Injection (2차 공기 분사에 의한 스파크 점화 가솔린 엔진의 배기 Hydrocarbon 저감에 관한 실험적 연구)

  • 심현성;김세준;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.104-112
    • /
    • 1999
  • An experimental study for reducing the exhaust hydrocarbon emission at spark ignition engine using timed secondary air injection is carried out . In this study, secondary air injection timings and durations are controlled to decrease the hydrocarbon emission and to increase exhaust gas temperature at cold and warm-up engine conditions. The hydrocarbon reduction rate and exhaust gas temperature are compared between timed secondary air injection and continuous air injection. The optimum secondary air injection timing for reducing the hydrocarbon emission is at the exhaust valve open timing. At some engine conditions , the hydrocarbon emissions are decreased to 10% of engine raw values and exhaust gas temperatures increase by 20$0^{\circ}C$ with times secondary air injection . Timed secondary air injection has more hydrocarbon reduction rate that continuous secondary air injection except some engine conditions.

  • PDF

Improving Sound Quality of the Exhaust System Using Convolution Analysis (자동차 배기계에 대한 음질 향상)

  • Yunseon Ryu;Kim, Yoon-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1148-1150
    • /
    • 2002
  • The exhaust system could be a dominant acoustical source in the passengers vehicle. It would be very important to obtain the acoustically good exhaust system, in order to control the cabin interior sound in automotive. In order to obtain the acoustically good exhaust system in automotive, many kinds of exhaust system should be measured, and simultaneously those results should be compared by the sound quality parameters. In this paper, in order to develop the methodology determining sound quality parameters, acoustic simulator is introduced, combining the time domain analysis and convolution analysis. As an example to verify the reliability of this method, several kinds of measurements are carried out, and the acoustically good exhaust system is selected, based on this proposed method.

  • PDF

A Study on the Reduction of HC and Heat Characteristics of the Dual Pipe Exhaust Manifold (이중관 배기메니폴드의 HC저감효과 및 열특성에 관한 연구)

  • 박경석;허형석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.103-111
    • /
    • 2001
  • During cold-start period, the reduction of exhaust emissions is a challenging task. To decrease harmful gaseous substances such as HC, it is necessary to realize a fast catalyst warm-up. In this study, the performance of dual pipe exhaust system have been carried out through different test mode. From measurement of gas temperature and HC concentration, the following conclusions were derived ; 1) Compared with single pipe, dual pipe exhaust system remarkably increase temperature of exhaust gas going through M.C.C(Main Catalytic Converter). 2) W.C.C.(Warm-up Catalytic Converter) also decreases HC emission. To reduce HC emission, it is helpful to use W.C.C. as well as dual pipe exhaust system. 3) Using finite element method, it is shown that inner parts have much higher distribution of temperature than outer parts.

  • PDF

Misfire Detection of a Gasoline Engine by Analysis of the Variation of Pressure in the Exhaust Manifold (배기관 내 압력 변동 분석에 의한 가솔린 기관의 실화 검출)

  • 심국상;복중혁;김세웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.1-8
    • /
    • 1999
  • This paper describes the method for detection of the misfired cylinder by analysis of the variation of pressure occurred in exhaust manifold on an MPI gasoline engine. Misfired cylinder(s) cause a loss of power, an increase of fuel consumption and exhaust emission and vibration is caused by unsteady torque. Therefore early detection and correction of misfired cylinder(s) play a very important role in the proper performance and the exhaust emission. The method is a comparison of integration pressure index during the period of a blowdown in the displacement period. Experimental results showed that the method, using the variation of pressure in the exhaust manifold is proven to be effective in the detection of single cylinder or multiple cylinders misfire on the gasoline engine regardless of the engine revolutions. In addition, this method, using the variation of pressure in the exhaust manifold is a very easy and accurate method compared with other methods.

  • PDF

A Study on the Fluid Dynamic of Catalytic Converter in Exhaust Pipe

  • Wangwenhai, Wangwenhai;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • The need to maximize the exhaust pipe inside surface and to minimize exhaust resistance And Find the best point between the exhaust and the duration of contact between the two surfaces. Exhaust gas mass flow On the whole cross section of catalytic converters more uniform distribution will contribute to its usability. Based on the flow rate of fluid traces given color, Exhaust fluid resistance in the porous catalyst can be estimated, from the efficiency of the catalytic converter that is very important.

An Experimental Study on the Analysis of Exhaust Gas Concentration by Using DMC in Diesel Engine (디젤엔진에서 DMC를 사용한 경우의 배기가스의 농도분석에 관한 실험적 연구)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • Recently, Our planet is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. So, lots of researchers have studied to reduce the exhaust emissions of diesel engine that influenced the environment strong. But most researchers have mainly studied and suggested the solution of reduction on the total exhaust emissions of diesel engine. In this study, the quantities of the low and high hydrocarbon among the exhaust emissions in diesel engine have been investigated by the quantitative analysis of the hydrocarbon C1~C6 using the gas chromatography. This study carried out by comparing the chromatograms with diesel fuel and mixed fuel which are blended the diesel and DMC(dimethyl carbonate)that includes the oxygen of about 53%. The results of this study show that the hydrocarbon C1~C6 among the exhaust emissions of the mixed fuel are exhausted lower than those of the diesel fuel at the all load.

  • PDF

A Study on the Strategy of Fuel Injection Timing according to Application of Exhaust Gas Recirculation for Off-road Engine (배기가스재순환 적용에 따른 Off-road 엔진의 연료 분사 시기 전략에 관한 연구)

  • Ha, Hyeongsoo;Shin, Jaesik;Pyo, Sukang;Jung, Haksup;Kang, Jungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.447-453
    • /
    • 2016
  • The reduction technologies of exhaust gas from both the off-road engine and on-road vehicles are important. It is possible to apply various combustion technologies with engines after the application of a treatment technology to this field. In this study, main injection timing, pilot injection timing, and exhaust gas recirculation (EGR) rate were selected as the experimental parameters whose effects on the emission of exhaust gases and on the fuel consumption characteristics were to be determined. In the experiment, the emission of nitrogen oxide (NOx) and Smoke, and the Torque at the same fuel consumption level, were measured. The experimental data were analyzed using the Taguchi method with an L9 orthogonal array. Additionally, analysis of variation (ANOVA) was used to confirm the influence of each parameter. Consequently, the level of each parameter was selected based on the signal-to-noise ratio data (main injection timing, 3; pilot injection timing, 3; EGR rate, 2), and the results of the Taguchi prediction were verified experimentally (error: NOx, 10.3 %; Smoke, 6.6 %; brake-specific fuel consumption (BSFC), 0.6 %).

Leakage Analysis of the Exhaust Gas for the Engine Exhaust Manifold (엔진 배기매니폴드의 배기가스 누설 해석)

  • Choi, Bok-Lok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from that thermal expansions of the runners are restricted by inlet flange connected to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Therefore, due to the repetitions of thermal deformation, leakage problems could be occur between inlet flange and cylinder head. In this study, we obtained pressure distributions along gasket bead lines from the finite element analysis and compared to the test results. It shows a good agreement between numerical and experimental results.

Analysis of Catalytic Reaction Characteristics of NGV Exhaust Gas by FTIR Spectroscopy (FTIR법에 의한 천연가스자동차 배기의 촉매반응특성 분석)

  • Choi, B.C.;Kim, Y.K.;Lim, M.T.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.218-225
    • /
    • 1998
  • FTIR spectroscopy, useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas, is utilized to investigate catalytic reaction charactristics of methane and a few unregulated exhaust emissions of NGV. Major findings are (1) catalytic reaction characteristics of methane measured in unsteady states of varying temperature are similar to those measured in steady states, (2) about 24 % of NO was oxidized to $NO_2$ as soon as they encounter catalysts, (3) study of formaldehyde suffers from difficulties in measurement due to the proximity in wavenumber of formaldehyde and methane, and requires an analyzer of higher resolution and accuracy than used in this study.

  • PDF

A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I) (자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I))

  • 박경석;신진식;이경우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF