• Title/Summary/Keyword: Automotive Chassis Parts

Search Result 35, Processing Time 0.021 seconds

Light-weight Design of a Korean Light Tactical Vehicle Using Optimization Technique (최적화 기법을 이용한 한국형 소형전술차량의 경량설계)

  • Suh, Kwonhee;Song, Bugeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.336-343
    • /
    • 2015
  • One of various main jobs in the design of a new tactical vehicle is to develop the lightest chassis parts satisfying the required durability target. In this study, the analytic methods to reduce the size and weight of a lower control arm and chassis frame of a Korean light tactical vehicle are presented. Topology optimization by ATOM (Abaqus Topology Optimization Module) is applied to find the optimal design of the suspension arm with volume and displacement constraints satisfied. In case of chassis frame, the light-weight optimization process associated with design sensitivity method is developed using Isight and ABAQUS. By these analytic methods we can provide design engineers with guides to where and how much the design changes should be made.

Development of aluminium chassis parts applied for Extruforming (알루미늄 익스트루포밍 샤시부품 개발 현찰)

  • Jang, G.W.;Lee, W.S.;Kim, D.E.;Oh, K.H.;Kim, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • Aluminum extruded profiles have been mostly used only a few automotive parts until now, such as roof rail, sunroof frame and bumper beams. However, Aluminum Extru-form technology, which was recently developed by foreign advanced manufacturer, made it possible to apply the aluminum extruded profiles to suspension parts of passenger and RV cars. It could be obtained by optimized billet casting, extrusion and stretch bending technology. It was possible to have the excellent weight reduction and the competitive price comparing with conventional process of aluminum for automotive parts. Combining additional process technology such as machining and joining, the application can be extended to various automotive parts. We have developed high strength aluminum alloy and fabricated subframe and suspension arm by extruforming process.

  • PDF

Shape Control of Automotive Flexible Plate in Press Quenching (프레스 퀜칭 공정에 의한 자동차 Flexible Plate의 형상 제어 연구)

  • Park, I.H.;Jeong, W.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • The production of automotive chassis parts requiring both high hardness and good shape-holdability is better realized by using press quenching technology, comprising the austenitizaton and the subsequent press quenching in a specially designed stamping tool. The effect of press quenching mold shape on the hardness distribution, bending height, and degree of planeness of automotive flexible plate during press quenching and tempering has been investigated. The preferable shape of the projections of punch and die in contact with the flexible plate was close to oval to improve the flow of cooling oil, leading to the higher hardness. The press quenching mold with three separate parts was more effective to control the dimensional change due to thermal deformation during press quenching. Some decrease in the bending height during tempering may be related to some recovery of the residual stress at $400^{\circ}C$.

Development of Automotive Lower Ann using Hybrid Manufacturing Process (하이브리드 제조공정을 이용한 자동차 로어암의 개발)

  • So, Sang-Woo;Hwang, Hyun-Tae;Lee, Jong-Hyun;Choi, Hung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.214-218
    • /
    • 2011
  • In order to survive in turbulent and competitive markets, automotive part manufacturers try efforts to develop new manufacturing technologies for ultra-lightweight, high-intensity and environmentally-friendly parts. Most of front lower arm is manufactured by welding process between upper- and lower panel which are produced by press stamping process. Because lower arm mounted on the cross member parts is one of the important complementary parts. So, to improve safety and lightweight of these parts, hybrid technologies are used in this paper. As hybrid technologies are applied to be front sub-frame, rear cross member and other chassis parts as well as front lower arm, the 20% lightweight has been achieved compared with existing steel parts.

Hydro-forming and Simulation of Cross Member Parts for Automotive Engine Cradle (차량 엔진크레들용 크로스멤버 부품의 하이드로-포밍가공 및 해석)

  • Kim, Kee-Joo;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The environment and energy related problem has become one of the most important global issues in recent years. One of the most effective ways of improving the fuel efficiency of automobiles is the weight reduction. In order to obtain this goal the hydroforming technology has been adapting for the high strength steel and its application is being widened. In present study, the chassis components (mainly cross members of engine cradle) simulation and development by hydroforming technology to apply high strength steel having tensile strength of 440 MPa grade is studied. In the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Overall possibility of hydroformable chassis parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, performing and hydroforming. In the die design stage, all the components of prototyping tool were designed and interference with press was investigated from the point of geometry and thinning.

Experimental Study on the Hydraulic Power Steering System Noise (유압식 동력 조향장치의 소음에 대한 실험적 연구)

  • Lee, Byung-Rim;Choi, Young-Min;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • Pressure ripple, vibration and noise level are measured in each parts of the power steering system. MD(Mahalanobis Distance) is calculated by using MTS(Mahalanobis Taguchi System) with measured data, and noise sensitive components are selected. The components applied detail design parameters are made and data is measured. After that MD is calculated also. Mean value and SN ratio can be obtained from the MD. Effective noise reduction technique and dominant design parameters in hydraulic power steering system are introduced.

Optimization for Component Noise Validation Test by Evaluation of Noise Control Factors for Suspension (현가장치 소음 발생인자 평가를 통한 부품소음 검증시험 최적화)

  • Son, Myungkoon;Lee, Taeyong;Lee, Sangbok;Lee, Seul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.344-349
    • /
    • 2017
  • Suspension noise from under a passenger car is one of the important factors that impact the perceptual quality for drivers. However, it is difficult to validate this by component level testing in the early stage of development, because suspension noise caused by interaction of the related parts has been found at saleable vehicles late during development or at the manufacturing stage, when many customers have already filed for claims. This study proposed a validation testing under research by the DFSS process that enables reproduction of vehicle level noise by component level testing using a shock absorber with the related parts, such as urethane bumper and top mount. This study also developed a compromised test matrix while analyzing the noise factors through experimental design and analysis of variance to determine what factors can affect noise. Based on this study, we expect that the vehicle level and customer claim can be validated during initial development timing by a more reliable component noise validation test.

A Study on Waveform Analysis of Oxygen Sensor, Injector and Secondary Waveform through Emission Characteristics by a Decrepit Vehicle (노후 차량의 배기가스 측정을 이용한 산소센서, 인젝터, 점화2차파형의 파형분석 연구)

  • Yoo, Jongsik;Kim, Chulsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.151-156
    • /
    • 2013
  • The experiment was done on cars travelling at the speeds of 20km/h, 60km/h and 100km/h using the performance testing mode for chassis dynamometer. In this experiment, the relativity between the secondary waveform coming from ignition coil and exhaust emissions were measured in case of cars with failures, in oxygen sensor, spark plugs. The following results obtained by analysis of the relativity between the secondary waveform and exhaust emissions. 1) When the oxygen sensor is failure, the average value of CO emission measured was 6.8 times higher than the standard CO emission value and the average value of HC emission measured was 2.3 times higher than the standard emission level. 2) When engine parts are in failure, more fuel enters the cylinder due to longer opening duration of injector, and it tended to make CO and HC emission values increase. 3) Combustion duration, the shape of flame propagation during spark line, and the size of the discharge-induced energy were the three main elements that directly cause variations in CO and HC emission values.

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.