• Title/Summary/Keyword: Automotive Air Conditioning System

검색결과 226건 처리시간 0.029초

하천수 열원 열펌프 시스템의 성능 특성 및 경제성 평가 (Performance Characteristics and Economic Assessment of a River Water: Source Heat Pump System)

  • 박차식;정태훈;박홍희;김용찬
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.621-628
    • /
    • 2009
  • The objectives of this study are to analyze the performance of a river water-source heat pump and to carry out economic assessment for the heat pump. The COP of the river water-source heat pump was 3-21% higher than that of the air-source heat pump because river water provides stable operating temperature compared with air temperature throughout the year. The economic analysis was carried out by comparing the initial and operating cost of the river water-source heat pump with those of the conventional air-source heat pump. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.5 years when the capacity of the river water-source heat pump was larger than 10 RT.

설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제28권6호
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

울진 원자력발전소 온배수를 이용한 재생식 해양온도차발전에 대한 연구 (A Study on Regenerative OTEC System using the Condenser Effluent of Uljin Nuclear Power Plant)

  • 강윤영;박성식;박윤범;김남진
    • 설비공학논문집
    • /
    • 제24권7호
    • /
    • pp.591-597
    • /
    • 2012
  • For the past few years, the concern for clean energy has been greatly increased. Ocean thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this study, we examined the thermodynamic performance of the OTEC power system for the production of electric power. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regenerative cycle, Kalina cycle, open cycle, and hybrid cycle. The results show that the regenerative cycle showed the best system efficiency. And then we examined the thermodynamic performance of regenerative cycle OTEC power system using the condenser effluent from Uljin nuclear power plant instead of the surface water. The highest system efficiency of the condition was 4.55% and the highest net power was 181 MW.

지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구 (The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS)

  • 홍성기;조성환
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

Control of Water Heat Recovery Chiller Using Split Condenser Templifier Application

  • Cho, Haeng-Muk;Mahmud, Iqbal
    • 에너지공학
    • /
    • 제18권1호
    • /
    • pp.17-21
    • /
    • 2009
  • By using the heat recovery of water-cooled chillers, it is possible to reduce the energy operating costs positively and at the same time it could fulfill the heating re-heat air conditioning system as well as the hot water requirements. Basically templifiers are designed to economically to turn the waste heat into useful heat. Waste heat is extracted from a fluid stream by cooling it in the evaporator, the compressor amplifies the temperature of the heat and the condenser delivers the heat to heating loads such as space heating, kitchens and domestic hot water. Design of higher water temperature requirements and split condenser heat recovery chiller system (using of templifiers) produced hotter condenser water approximately up to $60^{\circ}C$ and control the entire heat recovery system.

지역난방 공동주택 시스템에서 Smith Predictor 제어기 적용성 연구 (Strategy to Maintain the Smith Predictor Controller in the District Heating System for Apartment Buildings)

  • 정상훈;문연진;하재순;조성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1025-1030
    • /
    • 2009
  • It is known that the classical tuning formula for typical PID controllers in general provides unsatisfactory results for industrial plants where the time delay exceeds the dominant lag time. For this reason, alternative strategies have been studied in order to cope with this problem and the most popular scheme is the Smith Predictor(SP). In this paper, the dynamic model of a unit apartment in the district heating system, which is the control process effected by the dead-time, is developed, and the on/off room temperature control method with the SP simulate using Matlab-Simulink. The simulation results show that the SP works effectively in outdoor temperature variation.

  • PDF

인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교 (Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter)

  • 조성환;홍성기
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구 (An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields)

  • 김영민;강병하;박성제
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

확관을 고려한 불균일 내면가공관의 전열특성 (Heat Transfer Characteristics of the Non-Uniform Grooved Tube Considering Tube Expansion)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제24권7호
    • /
    • pp.553-559
    • /
    • 2012
  • A plate-fin heat exchanger is a type of heat exchanger widely used in air conditioners, and tubes and fins are tightly assembled by the mechanical expansion process of tubes. The tube expansion process deforms the grooves inside the tube, and the groove shapes also affect the adhesion between tubes and fins. In this study, the adhesion and heat transfer performance affected by the tube expansion of the non-uniform groove shape tube with different heights are investigated by both analysis and experiments. From the analysis method, it was shown that the contact pressure of non-uniform groove tube is higher than that of the uniform groove tube, and the most appropriate high groove number of the non-uniform groove tube is designed for the maximum contact pressure. From the experimental results, the decreasing rate of the condensation heat transfer coefficient is smaller in the non-uniform groove tube with different heights, compared to the conventional uniform groove tube. Also, the air-side heat transfer coefficient of the non-uniform groove tube with different heights is higher than that of the uniform groove tubes.