• 제목/요약/키워드: Automotive Air Conditioning System

검색결과 226건 처리시간 0.025초

엇갈림 휜을 갖는 전자기기의 열유동 모델링 및 휜 형상 최적 설계 (Thermal and Flow Modeling and Fin Structure Optimization of an Electrical Device with a Staggered Fin)

  • 김치원;이관수;여문수
    • 설비공학논문집
    • /
    • 제29권12호
    • /
    • pp.645-653
    • /
    • 2017
  • Thermal and flow modeling and fin structure optimization were performed to reduce the weight of an electrical device with a staggered fin. First, a numerical model for thermal and flow characteristics was suggested, and then, the model was verified experimentally. Using the verified model, improvement in cooling performance of the cooling system through the staggered fins was predicted. As a result, 87.5% of total heat generated was dissipated through the cooling fins, and a thermal island was observed in the rotor because of low velocity of the internal air flow through the air gap. In addition, it was confirmed that the staggered fin improves the cooling performance but it also increases the total pressure drop within the cooling system, by maximizing the leading edge effect. Based on this analysis result, the effect of each design parameter on the thermal and flow characteristics was analyzed to select the main optimal design parameters, and multi-objective optimization was performed by considering the cooling performance and the fin weight. In conclusion, the optimized fin structure improved the cooling performance by 7% and reduced the fin weight by 28% without any compromise of the pressure drop.

공조용 1마력급 2상 BLDC 팬모터의 설계 및 구현에 관한 연구 (A Study on the Design and Implementation of 2-phase BLDC Fan Motor with 1-horsepower Class for Air Conditioning)

  • 백수황
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.757-764
    • /
    • 2018
  • 본 논문은 공조시스템에 사용되는 1마력급 2상 BLDC 팬모터의 설계 및 구현에 관하여 기술한다. 본 연구에서 구현한 BLDC 모터는 수명 및 내구성이 우수한 무정류자 모터방식이며 2상 전원에 의해 구동된다. 공조시스템에 사용되는 모터의 가장 중요한 목표사양은 정격운전점에서 높은 효율을 갖는 것이다. 이를 위해 BLDC 모터의 고정자 형상과 회전자 자석의 설계를 수행하고 구동을 위한 제어회로를 설계하였다. BLDC 모터는 모터부와 제어부 그리고 전원부가 일체화된 구조를 갖는다. BLDC 모터의 특성계산을 위해 유한요소해석을 사용하였으며 시제품의 제작 및 성능시험을 실시하여 설계결과의 적합성을 확인하였다.

휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성 (Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin)

  • 김성철
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.69-73
    • /
    • 2013
  • 내부열교환기를 이용한 에어컨 시스템은 작동유체인 R134a의 고압측 액상냉매와 저압측 기상냉매의 상호 열교환을 통해 시스템의 응축 효율을 증가시켜 에너지 효율을 개선시킨다. 이는 에어컨 시스템의 성능 향상 및 경량화를 가능하게 하여 차량 연비 향상과 냉매 누출을 최소화할 수 있으며, 또한 현 R134a 대비 대체냉매 (R1234yf 등)의 동등 냉방성능 확보를 가능하게 하는 기술이다. 본 연구에서는 내측 압출 파이프 및 외측 사이 고효율 냉각 휜 (fin)이 삽입된 이중관 형태의 내부열교환기 상세 설계를 위해, 냉각 휜의 높이 및 내측 압출 파이프 내부형상 등의 다양한 형상 설계인자 변경에 따른 열전달 성능 및 압력강하 특성을 살펴보았다. 가장 우수한 내부열교환기 성능은 난류형성을 위한 내측관 형상이 라이너 및 세레이션 겸용 타입이었으며, 이는 내부열교환기가 장착되지 않은 경우보다 냉방시스템 성능이 약 6.4%, 시스템 COP는 약 9.2% 향상된 결과를 나타내었다.

수직 공간 내에서 고도변화에 따른 기압차로 인한 기류현상 예측에 관한 연구 (Effect of Atmospheric Pressure Difference with Altitude on the Induced Airflow Velocity in a Vertical Closed Conduit)

  • 정광섭;김철호
    • 설비공학논문집
    • /
    • 제21권7호
    • /
    • pp.409-416
    • /
    • 2009
  • On 21st century, global warming is the most serious environmental problem threatening the existence of lives on the earth. One of the serious reasons of this nature phenomena was due to the greenhouse effect by carbon dioxide mainly produced with the combustion process of hydro-carbon fuel. and it is mostly produced. In the high oil prices age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating large percentage whole building loads, and are regarding as the primary target of energy efficiency. The purpose of this research is on the obtaining of the renewable energy source in the skyscrape buildings in the metropolitan area. The air movement is happens due to the atmospheric pressure differences in the air. Due to this simple physical theory, it is easily expected to obtain the useful renewable nature energy through the high -raised vertical air stack installed in a tall building. However, there is one problem that should be resolved which is called air-hole effect in the sky -scrape buildings.

유한요소 해석 기반 자동차 공조용 DC모터 토크 리플과 소음 저감에 관한 연구 (FEA-based Torque Ripple and Noise Reduction of DC Motor for Automotive Air-Conditioning)

  • 황명환;김동현;양승진;차현록;한종호
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1895-1898
    • /
    • 2017
  • This paper discusses methods for the torque ripple and noise reduction of DC motors for automotive air-conditioning based on electromagnetic field analysis. The target of the motor is a blower motor, and to reduce cogging torque and the torque ripple, the optimum model was selected by deforming the brush or commutator shape. In addition, to reduce the cogging torque, the model design was carried out by applying the skew method and the magnetization method of a magnet to the rotor. For optimization, the shape, material, and drive system of the motor were selected using an electromagnetic field as the analysis tool, and the method of reducing the cogging torque was applied to 4-pole, 12- and 13-slot motors considering the mechanical part. Lastly, this paper confirmed thatthemethod, which proposed how much noise, cogging torque, and vibration are reduced, improves through practical analysis.

디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향 (Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header)

  • 정영준;김서영;김광호;곽재수;강병하
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향 (Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System)

  • 김덕진;이지근
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

대형 Community 건물의 연료전지 구동 지열원 히트펌프 냉.난방 시스템 성능에 관한 해석적 연구 (Analytical Study on the Performance of Fuel Cell Driven Ground Source Heat Pump Heating and Cooling System of a Large Community Building)

  • 변재기;정동화;최영돈;조성환
    • 설비공학논문집
    • /
    • 제21권6호
    • /
    • pp.355-366
    • /
    • 2009
  • In the present study, fuel cell driven ground source heat pump system is applied to a large community building and performance of the heat pump system is computationally analyzed. Conduction heat transfer between brine pipe and ground is analyzed by TEACH code to predict the performance of heat pump system. Predicted COP of the heat pump system and the energy cost were compared with variation of the location of the objective building the water saturation rate of soil and the driven powers of heat pump system. Significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system in comparison with the late-night electricity driven system. It is due to the low electricity production cost of fuel cell system and the application of recovered waste heat generated during electricity production process to the heating of large community building.