• Title/Summary/Keyword: Automobile Tire

Search Result 78, Processing Time 0.027 seconds

Estimation of Warranty Cost (품질하자보증비의 추정)

  • 최정호;이상용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.357-364
    • /
    • 1997
  • After the buyer purchases the product, the seller's role does not end. If the product fails to function properly before the end of the warranty period, the seller is responsible for its repair or replacement under the seller's warranty policy. There are two common types of warranty policies: the free replacement warranty and the rebate warranty. Under the free replacement warranty policy, replacement or repairs during the warranty period are provided by the seller free of charge to the buyer. Under the rebate warranty policy, a failed item is replaced by a new one or is repaired at a cost to the age of the failed item. The rebate warranty is most often used for items such as a battery or an automobile tire which wear out and must be replaced at failure. This paper proposes a easy way of estimating the warranty cost under the free replacement warranty policy assuming an exponential product failure function on repairable products.

  • PDF

Prediction of Gas Permeability by Molecular Simulation

  • Yoo, Jae ik;Jiang, Yufei;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • The research and development of high-performance polymer materials with excellent gas barrier properties has gained considerable attention from the viewpoint of expanding their applications in various fields, including tire automobile parts and the polymer film industry. Natural rubber (NR) has been widely used as a rubber material in real-life, but its application is limited owing to its poor gas barrier properties. In this paper, we study the gas barrier properties of NR, epoxidized natural rubber (ENR), and their blend compositions by using molecular simulation. The results show that ENR-50 has superior oxygen barrier properties than those of NR. Moreover, the oxygen barrier properties of a blend of NR/ENR-50 improve with increasing volume fraction of ENR-50. The trend of improved oxygen barrier properties of NR, ENR-50, and their blend is in good agreement with experimental observations.

A Study on the Collision Behavior of Fairy Cycle to Vehicle (어린이용 자전거의 차량 충돌거동에 관한 연구)

  • Kang, Dae-Min;Ahn, Seung-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.106-111
    • /
    • 2012
  • Recently the usage of bicycle has increased steeply in Korea owing to traffic culture of well- being. In a car to bicycle accident investigation, the throw distance of bicycle is very important factor for reconstructing of the accident. The variables that influence on the throw distance of bicycle can be classified into the factors of vehicle and bicycle. Simulations and collision tests in actual car to bicycle accident were executed for obtaining throw distance of bicycle. The simulations were done by PC-$CRASH^{TM}$ and for actual crash tests sand bags were used for the behavior of bicyclist instead of dummy. Factors considered were vehicle velocity and the moving angles of bicycle, also the types of bicycle and vehicle were fairy cycle and automobile, respectively. From the results, the throw distances of a head-on tire collision of $0^{\circ}$ direction was longer than that of tire crash test of $45^{\circ}$ direction, and the throw distances of a head -on frame crash test of $90^{\circ}$ direction was longer than that of frame crash test of $45^{\circ}$ direction. In addition restitution coefficient between vehicle and bicycle was estimated as about 0.1 with based on actual crash tests. Finally the increaser vehicle velocity the longer the throw distances of bicycle, and the results of simulation were relatively good agreement to the experimental results.

A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle (산업용 단선 궤도 차량의 주행 동특성에 관한 연구)

  • Lee Soo-Ho;Jung Il-Ho;Lee Hyung;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.

Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load (알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가)

  • Kim, Jong-Sung;Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

Automotive Tire Pressure Sensors with Titanium Membrane (티타늄 박막을 이용한 자동차 타이어 압력센서)

  • Chae, Soo
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.105-110
    • /
    • 2014
  • In this work, mechanical characteristics of titanium diaphragm have been studied as a potential robust substrate and a diaphragm material for automotive tire pressure sensor. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on titanium diaphragm have been designed, fabricated and characterized. The fabrication process for micromachined titanium devices keeps the membrane and substrate being at the environment of 20 MPa pressure and $200^{\circ}C$ for a half hour and then subsequently cooled to $24^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated titanium film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the fabricated device is $9.45ppm\;kPa^{-1}$ with a net capacitance change of 0.18 pF over a range 0-210 kPa.

A Design of the Automation Tyre Tread State Check System based on IoT Service (IoT 서비스 기반 자동차 타이어 트레드 자동 점검 시스템 설계)

  • Kim, Minyoung;Choi, Donggyu;Jang, Jong-wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.825-831
    • /
    • 2020
  • In modern society, automobiles have become an essential means of transportation. It is the only consumable that is worn by contacting the ground among automobile parts. If the tyres are severely worn, the tyres may be break, presenting a risk of a serious accident to the driver. To avoid this risk, drivers should check tyre pressure and tread condition before driving a car. Tyre inflation pressure can be easily measured by TPMS, but in the case of tyre tread conditions, it can be cumbersome when the driver measures it directly using a coin or vernier caliper. This hassle can expose the driver to traffic accidents due to tyre breakage by neglecting to measure the condition of the tyre tread. In this paper, we introduce the contents of research to design an IoT service-based system that can automatically measure automobile tyres, and we verified the possibility of realizing the system by actually implementing and testing some components of the system.

Effect on the Fuel Economy by Gradient in Automobile Driveway (자동차 전용도로에서 경사가 연비에 미치는 영향)

  • Choi, Seong-Cheol;Oh, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2925-2930
    • /
    • 2011
  • A vehicle fuel economy is very important issue in the view of fuel cost and environmental regulation. The fuel economy is much improved according to the development of electric, electronic and mechanical technology, but up to now the measurement of it tests the given mode(LA-4, FTP-75, etc) within computer simulation program and engine dynamometer. This fuel economy is different with it of real road. The one of main reason is not considered the gradient of the road. To estimate the effects of fuel economy at highway with gradient in this paper, we measure the amount of fuel consumption and calculate the fuel economy of it with running the Youngdong highway with high gradient. Also this paper analysis and compares the fuel economy with gradient and without gradient when the vehicle runs the same driveway. Then we calculate the total energy created the difference of fuel consumption amount of the two cases and calculate the consumpted energy by tire driving force from the torque and power of engine in the simulation. This paper verifies the relation of the driving force and the total energy by creating the difference of fuel consumption amount. This paper also proposes the method of fuel economy improvement despite of gradient at the result.

Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method

  • Kim, Gyu-Ha;Cho, Kyu-Zong;Chyun, In-Bum;Park, Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1450-1457
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of durability, noise/vibration/harshness (NVH), crashworthiness and passenger safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the Virtual Proving Ground (VPG) approach for obtaining the dynamic stress or strain history and distribution. The VPG uses a nonlinear, dynamic, finite element code (LS-DYNA) which expands the application boundary outside classic linear, static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic stress and fatigue critical region, a single bump run test, road load simulation, and field test have been performed. The prediction results were compared with experimental results, and the feasibility of the integrated life prediction methodology was verified.

Calculation of Brake Onset Velocity for Non-ABS Vehicle on Dry Asphalt Pavement (건조한 노면에서 Non-ABS 차량의 제동시점 속도계산 방법)

  • Kim, Kee-Nam;Ok, Jin-Kyu;Kim, Min-Seok;Mun, Won-Kil;Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • Skid mark and coefficient of friction are usually utilized to calculate the velocity and behavior of vehicles. For a critical case such as traffic accident reconstruction, however, the initial velocity of the car should be calculated precisely. In this study, the skid marks on dry asphalt pavement were measured, and the velocity at brake onset was precisely recovered. A passenger car with new tires and non-contact optical speedometer were set up for the tests. A new methodology to determine the more precise velocity for Non-ABS vehicle at braking onset were suggested.