• 제목/요약/키워드: Automobile Steering System

검색결과 63건 처리시간 0.026초

자동차용 밸브 하우징의 2 캐비티 다이캐스팅 성형해석에 관한 연구 (A Study on the Forming Analysis of the 2 Cavity Die Casting for Automobile Valve Housing)

  • 이종형;이창헌;이상영;하홍배
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.27-35
    • /
    • 2006
  • Al used in automobiles is mostly material, and according to the innovation of technique is in rapid development. Al die casting is an important field as today's trend of lightweight on automobiles. Valve housing in steering system improves driver's controling. The valve housing which is widely reliable to the most automobiles are developed this moment in our automobile industry. Therefore, they are produced by casting method which cost three times or even more expensive in production. If valve housing which is a part of steering system is produced by gravity casting, the space for manufacturing equipment will be increased, and more time and workers would be brought into service. For such reason, die casting would replace gravity casting in order to minimize cost of time, manpower, and working space. This study is the forming analysis of the 2 cavity die casting for automobile valve housing.

  • PDF

선박용 유압 조타 시스템의 구조적 안전성 평가 (Structural Safety Evaluation of Hydraulic Steering System for Ship)

  • 이문희;손인수;양창근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

자동차 조향장치용 TAS module을 위한 Multi-track Encoder기반 신호처리보드의 구현 (Preliminary study of Angle sensor module for Vehicle Steering System Based on Multi-track Encoder)

  • 우승탁;한춘수;백준병;이상훈;정민우;추성중;박재률;유종호;정상훈;김주영
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.432-437
    • /
    • 2017
  • As 4.0 industry has been developed, research on a self-driving car technology and related parts of an automobile has been highly investigated recently. Particularly, a TAS(Torque Angle Sensor) module on steering wheel system has been considered as a key technology because of its precise angle, torque detection and high speed signal processing. The environmental assessment is generally required on the TAS module to examine high resolution of angle/torque detection. In the case of existing TAS module, angle detection errors has been occurred by back-lash on main and sub gear in addition to complicated structure caused by gears. In this paper, a structure of the TAS module, which minimizes the numbers of components and angle detection errors on the module compared with the existing TAS module, for vehicle steering system based on a Multi-track Encoder has been proposed. Also, angle detection signal processing board, and key technology of the TAS module were fabricated and evaluated. As a result of the experiments, we confirmed an excellent performance of the fabricated signal processing board for angle detection and an applicability of the fabricated angle detection board on the TAS module of vehicles by the environmental assessment an automobile standard.

승용차 스티어링 칼럼 시스템의 진동해석과 승차감 개선에 관한 연구 (A study on the vibration analysis of automobile steering system and improvement of ride comfort)

  • 김찬묵;임홍재;김도연;임승만;이외순;조항원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.336-342
    • /
    • 1997
  • In this paper, in order to analyze dynamic characteristics of automobile steering system consisting of many components, natural frequencies and transfer functions of each component and total system are found on FFT by experiments. Then, the data are transmitted to commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of rubber coupling in column and telescoping effects on system are considered. C.A.E commercial program are used to compare with the results of experiments. For finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring elements. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency while the column mode is main mode at higher . The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도 (Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model)

  • 송정인;조진래
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.

가상 운전 시뮬레이터를 이용한 족동 조향 시스템의 운전 성능 평가 (Driving Performance Evaluation Using Foot Operated Steering System in the Virtual Driving Simulator)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권4호
    • /
    • pp.197-204
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of normal subjects for controlling the steering wheel by using foot operated steering devices in the driving simulator. Many people with complete bilateral loss or loss of use of upper limbs but with normal lower limbs are frequently left without use and/ or control of their hands, arms, or the upper extremities of their bodies. As a result, persons disabled in this manner have problems in operation an automobile because they cannot grasp and manipulate a conventional steering wheel. Therefore, if foot operated steering devices are used for controlling the vehicle on in people with disabilities, the disabled people could improve their community mobility by driving a car safely. Ten normal subjects were involved in this research to evaluate steering performance by using three types of steering devices(conventional steering wheel, pedal type foot steering, circular type foot steering) in driving simulator. STISim Drive 3 program was used for testing the driving performance in two road scenarios: straight road and curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA to compare the influences of two factors(type of foot steering device and road scenario) in the three dependent variables of steering performance(standard deviation of lateral position, the lateral position of vehicle and the number of line crossing). The average values of the three dependent variables(standard deviation of lateral position, lateral position and the number of line crossing) of driving performance were significantly smaller for conventional steering wheel or pedal type foot steering than circular type foot steering.

ITR의 회전토크저감을 위한 조립인자에 대한 연구 (Study on the Parameters to Decrease the Torque in ITR Part)

  • 최석우;김인호;임성주
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.26-31
    • /
    • 2005
  • ITR(Inne. Tie Rod) is one of the core parts in an automobile steering system. The front wheels are connected to the steering system, which are controlled by steering wheel through the ITR. Improvement of assembling ITR is needed f3r drivers' satisfaction. Therefore, the parameters influencing the rotational torque were studied and analyzed. The useful results can be obtained, and could be applied to manufacture ITR. Through these manufacturing technologies, high quality ITR have been manufactured with high productivity.

승객 상해의 감소를 위한 승용차 조향주의 최적설계 (An Optimum Design of a Steering Column to Minimize the Injury of a Passenger)

  • 박영선;이주영;박경진
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF

스티어링 시스템의 모델링 및 진동 해석 (Modeling and Vibration Analysis of Steering System)

  • 조준호;오재응;임동규;강성종;강성종
    • 소음진동
    • /
    • 제2권2호
    • /
    • pp.125-134
    • /
    • 1992
  • In this study, ti identify the dynamic characteristics of automobile steering system which consists of many components and joints, each component combined structure was analyzed using commercial structural package, ANSYS. And, the finite element method for each component and modeling method of several joints universal joint, bolt joint, bearing, etc. were studied. On the other hand, the experimental modal analysis was performed to compare with the results of the finite element analysis and joint modeling. The result shows very close agreement between two analysis. Also, it was found that the steeing column used in this experiment does not effect the low frequency mode of entire system. In addition, we found that constraint equations need to be considered in modeling universal joint. Since the stiffness effect of Urethane around wheel could be ignored, it can be modeled only with mass effect. In the end, it was found that dynamic characteristics of the entire steerintg system depends mainly upon the wheel characteristics.

  • PDF