• Title/Summary/Keyword: Automation tool

Search Result 445, Processing Time 0.023 seconds

A Study on Improving the Efficiency of Magnetic Abraslve Polishing for Die & Mold Surfaces (금형면의 자기연마가공 고효율에 관한 연구)

  • 이용철;안제정박;중천위웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.98-102
    • /
    • 1994
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential method for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of gridability by comparision with grinding wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by collegues. This study also aims to improve the efficiency of polishing by introducing the easily-polished shape surface milling method equalizing the tool feed per tooth to the pick feed. This milling method was experimentally confirmed to have sufficient grindability to polish milled surface (with 10 .mu. mRmax surface roughness) into mirror surface (with 0.4 .mu. mRmax surface roughness).

  • PDF

Application of Taguchi Method for the Selection of Chip Breaker (칩브레이크 선정을 위한 Taguchi 방법의 적용)

  • 전준용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.118-125
    • /
    • 1998
  • Chip control is a major problem in automatic machining process, especially in finish turning operation. In this case, chip breaker is one of the important factors to be determined. As unbroken chips are grown. these deteriorate the surface roughness. and proces automation can not be carried out. In this study to get rid of chip curling problem while turning internal hole. optimal chip breaker is selected from the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factors. From the response table. cutting speed, feedrate, depth of cut and tool geometry turn to be major factors affecting chip formation. Then, optimal chip breaker is selected. and this is verified as good enough for chip control from the experiment.

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연;서운학;이영진;지호성;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.96-101
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for automatic test and assembling in S company.

  • PDF

A preliminary Study on Process Improvement for BIM based Condensation Performance Evaluation of Apartment Housings (BIM기반 공동주택 결로 성능평가를 위한 프로세스 개선방안에 관한 기초연구)

  • Hong, Jooyoung;Kim, Daegil;Lee, Myungdo;Kim, Daewon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.245-246
    • /
    • 2016
  • The condensation performance evaluation is required for improved living environment of apartment housings. In the current condensation performance evaluation process, high demand of manual works and repetitive process cause unexpected risks due to uncertainty and inefficiency by applying 2D CAD drawings in simulation tool. Furthermore, the evaluation requires taking in action responding to the expanding use of BIM. In this study, the analysis of current evaluation process and required functions for the process improvement based on BIM modeling were deducted from interviews with experts. It is expected that the results of this study can be employed to develop of process automation module for condensation simulation evaluation.

  • PDF

Integration of Systems Engineering and System Safety Analysis for Developing CBTC System (CBTC 시스템 개발을 위한 시스템엔지니어링과 안전성 분석의 통합)

  • 박중용;박영원
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This article proposes an integrated systems engineering and safety analysis model for safety-critical systems development. A methodology in system design for safety is considered during the early phase of the development life cycle of systems engineering process. The evolution of the design automation technology has enabled engineers to perform the model-based systems engineering. A Computer-Aided Systems Engineering(CASE) tool, CORE, is utilized to integrate the systems engineering model with a system safety analysis model. The results of the functional analysis phase can drive the analysis of the system safety. An example of Communications-Based Train Control(CBTC) system for an Automated Guided Transit(AGT) system demonstrated an application of the integrated model.

Validation of the Control Logic for Automated Material Handling System Using an Object-Oriented Design and Simulation Method (객체지향 설계 및 시뮬레이션을 이용한 자동 물류 핸들링 시스템의 제어 로직 검증)

  • Han Kwan-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.834-841
    • /
    • 2006
  • Recently, many enterprises are installing AMSs(Automated Manufacturing Systems) for their competitive advantages. As the level of automation increases, proper design and validation of control logic is a imperative task for the successful operation of AMSs. However, current discrete event simulation methods mainly focus on the performance evaluation. As a result, they lack the modeling capabilities for the detail logic of automated manufacturing system controller. Proposed in this paper is a method of validation of the controller logic for automated material handling system using an object-oriented design and simulation. Using this method, FA engineers can validate the controller logic easily in earlier stage of system design, so they can reduce the time for correcting the logic errors and enhance the productivity of control program development Generated simulation model can also be used as a communication tool among FA engineers who have different experiences and disciplines.

Unified Approach for Force/Position Control in the Vehicle Body Sanding Process

  • Nguyen, Chi Thanh;Lee, Jae Woo;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.25-31
    • /
    • 2017
  • This study presents a methodology for simulating a unified approach that controls interaction force between tool and objective by using a synthesis method of robot interacting control law for stabilizing the transient process of motion. Root locus is used to analyze stabilization of motion deviation characteristics. Based on responses of motion deviation, contact force is derived to satisfy exponential stability and we generate control input with respect to motion trajectories and interaction force. Moreover, simulation is applied to experimental application of a Cartesian robot driven by two stepper motors, and the noise of feedback signals is considered as presence of system inaccuracies, and the unified approach of interaction force control is examined precisely.

Improvement of Thickness Accuracy in Hot-Rolling Mill Using Neural Network and Genetic Algorithm (신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상)

  • 손준식;김일수;최승갑;이덕만
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.41-46
    • /
    • 2002
  • In the face of global competition, the requirements fer the continuously increasing productivity, flexibility and quality (dimensional accuracy, mechanical properties and surface properties) have imposed a major change on steel manufacturing industries. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. To achieve this objectives, a new loaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.

  • PDF

Micro-Deburring of Electro-Parts by Powder Blasting (Powder Blasting을 이용한 전자부품의 미세버 제거)

  • 김광현;최영현;최종순;박동삼;유우식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.314-318
    • /
    • 2002
  • Several types of burrs form on the edges of all machined and stamped parts. These burrs must be removed to prevent interference fits or short circuits, to improve fatigue life or to prevent injury. Despite the full or partial automation of FMC or FMS, deburring operations to obtain workpiece with fine surface quality are difficult to be automated since the occurrence and condition of burr are not constant. This study focused on developing micro-deburring technique for small electro- parts produced by press process. The successful performance was demonstrated by deburring experiment using the powder blasting.

  • PDF

Modeling of the Specific Cutting Pressure and Prediction of the Cutting Forces in Face Milling (정면 밀링 가공에서의 비절삭 저항 모델링 및 절삭력 예측)

  • Kim, Kug-Weon;Joo, Jung-Hoon;Lee, Woo-Young;Choi, Sung-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.116-122
    • /
    • 2008
  • In order to establish automation or optimization of the machining process, predictions of the forces in machining are often needed. A new model fur farces in milling with the experimental model based on the specific cutting pressure and the Oxley's predictive machining theory has been developed and is presented in this paper. The specific cutting pressure is calculated according to the definition of the 3 dimensional cutting forces suggested by Oxley and some preliminary milling experiments. Using the model, the average cutting forces and force variation against cutter rotation in milling can be predicted. Milling experimental tests are conducted to verify the model and the predictive results agree well with the experimental results.