• Title/Summary/Keyword: Automatic water quality monitoring system

Search Result 37, Processing Time 0.022 seconds

Construction of the Automatic Water Quality Monitoring System for the Saemankeum (새만금해역 자동수질모니터링시스템 구축)

  • Kim, Won-Jang;Park, Sang-Hyun;Lee, Hyung-Joo;Lee, Kwang-Ya
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.441-444
    • /
    • 2002
  • In recent, industrialization increases the level of pollution load in sea areas, and the inflows of pollutants to public sea areas cause sudden and wide-range of influence to the water quality and the ecosystem. To prepare for these kinds of unpredictable water pollution issues, the necessity is emerging to build an automatic water quality monitoring system, which can monitor and alarm the water quality changes of the subject sea areas. For the ongoing installation plan of the automatic water quality monitoring system around the Saemankeum sea area, this report compares and analyzes its installation conditions as well as the physical and chemical characteristics of the in-situ type and the water-sampling type of the automatic water quality monitoring equipments, and subjects to provide elementary data for the system installation in the Saemankeum.

  • PDF

Establishment of Alarm Criteria for Automatic Water Quality Monitoring System in Korea

  • Lim, Byung-Jin;Hong, Eun-Young;Kim, Hyun-Ook;Jeong, Eun-Sook;Heo, Woo-Myung;Kim, Yoon-Hee
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • As of September 2008,45 Automatic Water Quality Monitoring Systems (AWQMS) have been installed at different sites on the 4 rivers to detect early the presence of pollutants in water and to issue an alarm. We count the number of issuing alarms by AWQMS, however, we will find the alarm has hardly been issued. The reasons for the scarcity of alarm issue are extensively being examined. The National Institute of Environmental Research attributes wrong alarm criteria for each AWQMS station to one the reasons. In this study, a suggestion has been made to modify the current alarm criteria to correspond with characteristics of river water quality. The current system with only two criteria (low and high) should be replaced as four-criteria systems (low, medium, high, and severe) based on cases of other advanced countries and stream conditions of Korea. The highest value of data collected for 5 years was suggested as the alarm criteria for each parameter. Meanwhile the alarm criteria for VOCs, phenol and heavy metals were established as same as drinking water quality criteria.

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

Causes of Fish Kill in the Urban Stream and Prevention Methods II - Application of Automatic Water Quality Monitoring Systen and Water Quality Modeling (도시 하천에서의 어류 폐사 원인 분석 II - 자동수질측정장치 및 수질모델의 사용)

  • Lee, Eun-hyoung;Seo, Dongil;Hwang, Hyun-dong;Yun, Jin-hyuk;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.585-594
    • /
    • 2006
  • This study focused on the causes of fish kills and its prevention methods in Yudeung Stream, Daejeon, Korea. Intense field data, continuous water quality monitoring system and water quality modeling were applied to analyze the causes. Pollutant can be delivered to urban streams by surface runoff and combined sewer overflows in rainfall events. However, water quality analysis and water quality modeling results indicate that the abrupt fish kills in the Yudeung stream seems to be caused by combined effect of DO depletion, increase in turbidity and other toxic material. Excessive fish population in the study area may harm the aesthetic value of the stream and also has greater potential for massive fish kills. It is suggested to implement methods to reduce delivery of pollutants to the stream not only to prevent fish kills but also to keep balance of ecosystem including human uses. Frequent clean up of the urban surface and CSO, installation of detention basin will be helpful. In the long run, it seems combined sewer system has be replaced with separate sewer system for more effective pollutant removal in the urban area.

Quality Control to Improve Reliability of Automatic Water Quality Data (수질자동측정망 자료의 신뢰성 제고를 위한 정도관리)

  • Lim, Byung-Jin;Hong, Eun-Young;Kim, Hyun-Ook
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.338-344
    • /
    • 2010
  • The automatic water quality monitoring system (AWQMS) have been installed to immediately response to any pollution incident. It also make it possible to conduct the task efficiently regarding water quality control. The purpose of this study is to enhance reliability by securing accuracy of automatic water quality data through quality assessment (QA) for temperature, pH, dissolved oxygen (DO), electric conductivity (EC), total organic carbon (TOC). The result of comparison between manual and automatic data, relative accuracy of general items (temperature, pH, EC, DO) and TOC were mostly satisfied with guideline (i.e. less than 20%). On the other hand, relative accuracy of DO between sampling site and housing site was somewhat against the guideline. The contamination by attaching algae and microorganism in the pipeline is considered as main cause. After backwashing the pipeline, DO concentration was increased up to 53%. Therefore, pipeline management is recognizable as important thing to secure reliability of water quality data.

Comparative Analysis on the Outlier Data of Each Parameter in Automatic Water Quality Monitoring Networks (수질자동측정망 자료의 항목별 이상치 비교 분석)

  • Lim, Byungjin;Hong, Eunyoung;Yeon, Insung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.700-706
    • /
    • 2010
  • Along the 4 major rivers in korea, there are automatic water quality monitoring (AWQM) stations to immediately respond to any pollution incident. Real-time data (temperature, DO, pH, EC and TOC) collected at each station were statistically treated to exclude outliers and keep valid data using Dixon's test and Discordance test. These applied methods were compared in terms of the number of the outliers sorted out. There was no significant difference between these methods. On the other hand, more outliers were sorted out from EC and TOC data, comparing with other water quality items. EC data did not show partly any variation for a long time at H station. If measured signal does not exceed ${\pm}0.001mS/cm$ from the sectional mean, the signal should be treated as normal data. Therefore, another routine was added to the data screening system, some data which were removed as outlier were restored.

An Automated Water Nitrate Monitoring System based on Ion-Selective Electrodes

  • Cho, Woo Jae;Kim, Dong-Wook;Jung, Dae Hyun;Cho, Sang Sun;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • Purpose: In-situ water quality monitoring based on ion-selective electrodes (ISEs) is a promising technique because ISEs can be used directly in the medium to be tested, have a compact size, and are inexpensive. However, signal drift can be a major concern with on-line management systems because continuous immersion of the ISEs in water causes electrode degradation, affecting the stability, repeatability, and selectivity over time. In this study, a computer-based nitrate monitoring system including automatic electrode rinsing and calibration was developed to measure the nitrate concentration in water samples in real-time. Methods: The capabilities of two different types of poly(vinyl chloride) membrane-based ISEs, an electrode with a liquid filling and a carbon paste-based solid state electrode, were used in the monitoring system and evaluated on their sensitivities, selectivities, and durabilities. A feasibility test for the continuous detection of nitrate ions in water using the developed system was conducted using water samples obtained from various water sources. Results: Both prepared ISEs were capable of detecting low concentrations of nitrate in solution, i.e., 0.7 mg/L $NO_3-N$. Furthermore, the electrodes have the same order of selectivity for nitrate: $NO_3{^-}{\gg}HCO_3{^-}$ > $Cl^-$ > $H_2PO_4{^-}$ > $SO{_4}^{2-}$, and maintain their sensitivity by > 40 mV/decade over a period of 90 days. Conclusions: The use of an automated ISE-based nitrate measurement system that includes automatic electrode rinsing and two-point normalization proved to be feasible in measuring $NO_3-N$ in water samples obtained from different water sources. A one-to-one relationship between the levels of $NO_3-N$ measured with the ISEs and standard analytical instruments was obtained.

Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring

  • Jeon, Jechan;Choi, Hyeseon;Shin, Dongseok;Kim, Lee-hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In Korea, nonpoint pollutants have a significant effect on rivers' water quality, and they are discharged in very different ways depending on rainfall events. Therefore, preparing an optimal countermeasure against nonpoint pollutants requires much monitoring. The present study was conducted to help prepare a method for installing an automatic nonpoint pollutant measurement system for the cost-effective monitoring of the effect of nonpoint pollutants on rivers. In the present study, monitoring was performed at six sites of a river passing through an urban area with a basin area of $454.3km^2$. The results showed that monitoring could be performed for a relatively long time interval in the upstream and downstream regions, which are mainly comprised of forests, regardless of the rainfall amount. On the contrary, in the urban region, the monitoring had to be performed at a relatively short time interval each time when the rainfall intensity changed. This was because the flow rate was significantly dependent on the rainfall's intensity. The appropriate sites for installing an automatic measurement system were found to be a site before entering the urban region, a site after passing through the urban region, and the end of a river where the effects of nonpoint pollutant sources can be well-decided. The analysis also showed that the monitoring time should be longer for the rainfall events of a higher rainfall class and for the sites closer to the river end. This is because the rainfall runoff has a longer effect on the river. However, the effect of nonpoint pollutant sources was not significantly different between the upstream and the downstream in the cases of rainfall events over 100 mm.