• Title/Summary/Keyword: Automatic recognition

Search Result 1,072, Processing Time 0.026 seconds

Readability Enhancement of English Speech Recognition Output Using Automatic Capitalisation Classification (자동 대소문자 식별을 이용한 영어 음성인식 결과의 가독성 향상)

  • Kim, Ji-Hwan
    • MALSORI
    • /
    • no.61
    • /
    • pp.101-111
    • /
    • 2007
  • A modified speech recogniser have been proposed for automatic capitalisation generation to improve the readability of English speech recognition output. In this modified speech recogniser, every word in its vocabulary is duplicated: once in a de-caplitalised form and again in the capitalised forms. In addition its language model is re-trained on mixed case texts. In order to evaluate the performance of the proposed system, experiments of automatic capitalisation generation were performed for 3 hours of Broadcast News(BN) test data using the modified HTK BN transcription system. The proposed system produced an F-measure of 0.7317 for automatic capitalisation generation with an SER of 48.55, a precision of 0.7736 and a recall of 0.6942.

  • PDF

Smart Phone Road Signs Recognition Model Using Image Segmentation Algorithm

  • Huang, Ying;Song, Jeong-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.887-890
    • /
    • 2012
  • Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.

  • PDF

Distorted Speech Rejection For Automatic Speech Recognition under CDMA Wireless Communication (CDMA이동통신환경에서의 음성인식을 위한 왜곡음성신호 거부방법)

  • Kim Nam Soo;Chang Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.597-601
    • /
    • 2004
  • This paper introduces a pre-rejection technique for wireless channel distorted speech with application to automatic speech recognition (ASR) Based on analysis of distorted speech signals over a wireless communication channel. we propose a method to reject the channel distorted speech with a small computational load. From a number of simulation results. we can discover that tile pre-rejection algorithm enhances the robustness of speech recognition operation.

Cyber Threats Analysis of AI Voice Recognition-based Services with Automatic Speaker Verification (화자식별 기반의 AI 음성인식 서비스에 대한 사이버 위협 분석)

  • Hong, Chunho;Cho, Youngho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.33-40
    • /
    • 2021
  • Automatic Speech Recognition(ASR) is a technology that analyzes human speech sound into speech signals and then automatically converts them into character strings that can be understandable by human. Speech recognition technology has evolved from the basic level of recognizing a single word to the advanced level of recognizing sentences consisting of multiple words. In real-time voice conversation, the high recognition rate improves the convenience of natural information delivery and expands the scope of voice-based applications. On the other hand, with the active application of speech recognition technology, concerns about related cyber attacks and threats are also increasing. According to the existing studies, researches on the technology development itself, such as the design of the Automatic Speaker Verification(ASV) technique and improvement of accuracy, are being actively conducted. However, there are not many analysis studies of attacks and threats in depth and variety. In this study, we propose a cyber attack model that bypasses voice authentication by simply manipulating voice frequency and voice speed for AI voice recognition service equipped with automated identification technology and analyze cyber threats by conducting extensive experiments on the automated identification system of commercial smartphones. Through this, we intend to inform the seriousness of the related cyber threats and raise interests in research on effective countermeasures.

Developing an Automatic Classification System Based on Colon Classification: with Special Reference to the Books housed in Medical and Agricultural Libraries (콜론분류법에 바탕한 자동분류시스템의 개발에 관한 연구 - 농학 및 의학 전문도서관을 사레로 -)

  • Lee Kyung-Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.23
    • /
    • pp.207-261
    • /
    • 1992
  • The purpose of this study is (1) to design and test a database which can be automatically classified, and (2) to generate automatic classification number by processing the keywords in titles using the code combination method of Colon Classification(CC) as well as an automatic recognition of subjects in order to develop an automatic classification system (Auto BC System) based on CC which can be applied to any research library. To conduct this study, 1,510 words in the fields of agricultrue and medicine were selected, analized in terms of [P], [M], [E], [S], [T] employed in CC, and included in a database for classification. For the above-mentioned subject fields, the principle of an automatic classification was specified in order to generate automatic classification codes as well as to perform an automatic subject recognition of the titles included. Whenever necessary, editing, deleting, appending and reindexing of a database can be made in this automatic classification system. Appendix 1 shows the result of the automatic classification of books in the fields of agriculture and medicine. The results of the study are summarized below. 1. The classification number for the title of a book can be automatically generated by using the facet principles of Colon Classification. 2. The automatic subject recognition of a book is achieved by designing a database making use of a globe-principle, and by specifying the subject field for each word. 3. The automatic subject-recognition of input data is achieved by measuring the number of searched words by each subject field. 4. The combination of classification numbers is achieved by flowcharting of classification formular of each subject field. 5. The efficient control of classification numbers is achieved by designing control codes on the database for classification. 6. The automatic classification by means of Auto BC has been proved to be successful in the research library concentrating on a Single field. The general library may have some problem in employing this system. The automatic classification through Auto BC has the following advantages: 1. Speed of the classification process can be improve. 2. The revision or updating of classification schemes can be facilitated. 3. Multiple concepts can be expressed in a single classification code. 4. The consistency of classification can be achieved with the classification formular rather than the classifier's subjective judgement. 5. A user's retrieving process can be made after combining the classification numbers through keywords relating to the material to be searched. 6. The materials can be classified by a librarian without subject backgrounds. 7. The large body of materials can be quickly classified by means of a machine processing. 8. This automatic classification is expected to make a good contribution to design of the total system for library operations. 9. The information flow among libraries can be promoted owing to the use of the same program for the automatic classification.

  • PDF

Automatic Recognition Algorithm for Linearly Modulated Signals Under Non-coherent Asynchronous Condition (넌코히어런트 비동기하에서의 선형 변조신호 자동인식 알고리즘)

  • Sim, Kyuhong;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2409-2416
    • /
    • 2014
  • In this paper, an automatic recognition algorithm for linearly modulated signals like PSK, QAM under noncoherent asynchronous condition is proposed. Frequency, phase, and amplitude characteristics of digitally modulated signals are changed periodically. By using this characteristics, cyclic moments and higher order cumulants based features are utilized for the modulation recognition. Hierarchial decision tree method is used for high speed signal processing and totally 4 feature extraction parameters are used for modulation recognition. In the condition where the symbol number is 4,096, the recognition accuracy of the proposed algorithm is more than 95% at SNR 15dB. Also the proposed algorithm is effective to classify the signal which has carrier frequency and phase offset.

Automatic Detection of Mispronunciation Using Phoneme Recognition For Foreign Language Instruction (음성인식기를 이용한 한국인의 외국어 발화오류 자동 검출)

  • Kwon Chul-Hong;Kang Hyo-Won;Lee Sang-Pil
    • MALSORI
    • /
    • no.48
    • /
    • pp.127-139
    • /
    • 2003
  • An automatic pronunciation correction system provides learners with correction guidelines for each mispronunciation. In this paper we propose an HMM based speech recognizer which automatically classifies pronunciation errors when Korean speak Japanese. For this purpose we also develop phoneme recognizers for Korean and Japanese. Experimental results show that the machine scores of the proposed recognizer correlate with expert ratings well.

  • PDF

Automatic Floating-Point to Fixed-Point Conversion for Speech Recognition in Embedded Device (임베디드 디바이스에서 음성 인식 알고리듬 구현을 위한 부동 소수점 연산의 고정 소수점 연산 변환 기법)

  • Yun, Sung-Rack;Yoo, Chang-D.
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.305-306
    • /
    • 2007
  • This paper proposes an automatic conversion method from floating-point value computations to fixed-point value computations for implementing automatic speech recognition (ASR) algorithms in embedded device.

  • PDF

Vehicle-logo recognition based on the PCA

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.429-431
    • /
    • 2012
  • Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.

Developing an Automatic Classification System for Botanical Literatures (식물학문헌을 위한 자동분류시스템의 개발)

  • 김정현;이경호
    • Journal of Korean Library and Information Science Society
    • /
    • v.32 no.4
    • /
    • pp.99-117
    • /
    • 2001
  • This paper reports on the development of an automatic book classification system using the faced classification principles of CC(Colon Classification). To conduct this study, some 670 words in the botanical field were selected, analyzed in terms [P], [M], [E], [S], [T] employed in CC 7, and included in a database for classification. The principle of an automatic classification system is to create classification numbers automatically through automatic subject recognition and processing of key words in titles through the facet combination method of CC. Particularly, a classification database was designed along with a matrix-principle specifying the subject field for each word, which can allow automatic subject recognition possible.

  • PDF