• Title/Summary/Keyword: Automatic irrigation control system

Search Result 28, Processing Time 0.018 seconds

Growth and Ingredient Contents of Platycodon grandiflorum Roots under Sensor-based Soil Moisture Contents of Farmland Conditions

  • Eon-Yak Kim;Ye-Jin Lee;Hye-Min Son;Young-Beob Yu;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.762-769
    • /
    • 2022
  • Growth characters and ingredient contents of two-year-old bellflower (Platycodon grandiflorum) roots were investigated under both control and soil moisture treatment condition using soil moisture control system including soil sensing and automatic water supply chain in this study. Root diameter, fine root number, root length, fresh weight and dry weight of the plant were significantly influenced by the automatic water treatment, 20%, 30%, 40% and 50%, respectively. Ingredient contents of the two-year-old roots in bellflower plants were detected in the 20% and 50% of controlled soil moisture content. Contents of amino acids were decreased by the soil moisture treatment, meanwhile, contents of minerals were not showed significant decrease except for phosphorus content. Showing no difference in proline and tyrosine, fourteen of the amino acid contents were gradually decreased by the increased soil moisture contents, with significant decrease in serine, glycine, alanine, leucine, lysine and histidine at 20% treatment.

Analysis of the Optimal Window Size of Hampel Filter for Calibration of Real-time Water Level in Agricultural Reservoirs (농업용저수지의 실시간 수위 보정을 위한 Hampel Filter의 최적 Window Size 분석)

  • Joo, Dong-Hyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-Hoon;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.9-24
    • /
    • 2022
  • Currently, a vast amount of hydrologic data is accumulated in real-time through automatic water level measuring instruments in agricultural reservoirs. At the same time, false and missing data points are also increasing. The applicability and reliability of quality control of hydrological data must be secured for efficient agricultural water management through calculation of water supply and disaster management. Considering the characteristics of irregularities in hydrological data caused by irrigation water usage and rainfall pattern, the Korea Rural Community Corporation is currently applying the Hampel filter as a water level data quality management method. This method uses window size as a key parameter, and if window size is large, distortion of data may occur and if window size is small, many outliers are not removed which reduces the reliability of the corrected data. Thus, selection of the optimal window size for individual reservoir is required. To ensure reliability, we compared and analyzed the RMSE (Root Mean Square Error) and NSE (Nash-Sutcliffe model efficiency coefficient) of the corrected data and the daily water level of the RIMS (Rural Infrastructure Management System) data, and the automatic outlier detection standards used by the Ministry of Environment. To select the optimal window size, we used the classification performance evaluation index of the error matrix and the rainfall data of the irrigation period, showing the optimal values at 3 h. The efficient reservoir automatic calibration technique can reduce manpower and time required for manual calibration, and is expected to improve the reliability of water level data and the value of water resources.

Analysis of Applicability by Filter Technique for Water Level Correction of Agricultural Canal (농업용 수로부의 수위 보정을 위한 필터기법별 적용성 분석)

  • Joo, Donghyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-hoon;Yun, Hyung Chang;Park, Sang-Bin;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.51-68
    • /
    • 2023
  • Due to the recent integrated water management policy, it is important to identify a reliable supply amount for establishing an agricultural water supply plan. In order to identify the amount of agricultural water supply, it is essential to calculate the discharge by measuring the water level and flow velocity of reservoirs and canal agricultural water, and quality control to ensure reliability must be preceded. Unlike agricultural reservoirs, canal agricultural water are more sensitive to the surrounding environment and reservoir irrigation methods (continuous, intermittent irrigation, etc.), making it difficult to estimate general water level patterns and at the same time a lot of erroneous data. The Korea Rural Community Corporation is applying a filter technique as a quality control method capable of processing large quantities and real-time processing of canal agricultural water level data, and applicability evaluation is needed. In this study, the types of errors generated by the automatic water level measurement system were first determined. In addition, by using the manual quality control data, a technique with high applicability is derived by comparing and analyzing data calibrated with Gaussian, Savitzky-Golay, Hampel, and Median filter techniques, RMSE, and NSE, and the optimal parameters of the technique range was derived. As a result, the applicability of the Median filter was evaluated the highest, and the optimal parameters were derived in the range of 120min to 240min. Through the results of this study, it is judged that it can be used for quantitative evaluation to establish an agricultural water supply plan.

Effect of Irrigation of River Water and Swine Slurry Liquid Fertilizer on Kenaf (Hibiscus cannabinus L.) Growth Cultivated Using Soil Moisture Control System in Reclaimed Land (자동 수분 제어시스템을 이용한 간척지 케나프 재배시 하천수 및 액비 관개 효과)

  • Kang, Chan-Ho;Lee, In-Sok;Lee, Jin-Jae;Kim, Hee-Jun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.87-96
    • /
    • 2021
  • Information and Communication Technology (ICT) remote soil moisture control system including soil sensing, automatic water supply chain, and remote alarming system was established on reclaimed land and operated stably. The system was operated using river water around the reclaimed land without fertilizer. On applying this system to control soil moisture, the kenaf germination rate was improved up to two times. Kenaf biomass was 4,748 kg/10a and was higher than that of untreated soil moisture management. When the nutritious liquid fertilizer was used, kenaf yield reached 8,390 kg/10a, which was lower than 10,848 kg/10a of the non-reclaimed land treated with standard chemical fertilizers. As the soil moisture was managed stably through the ICT remote soil moisture control system, the quality of the kenaf crop was improved, resulting in a 7% increase in dry weight, and a 11.5% increase in plant hardness. The estimated kenaf yield was 5,039 kg/10a when 800 tonnes of water were supplied by the ICT remote soil moisture control system with the stream water around Saemangeum reclaimed land without chemical fertilizers and organic matter.

Trickling Performance of Individual Watering System with Variety, Thickness and Firing Temperature of Ceramic (세라믹 종류, 두께 및 소성온도에 따른 식물개체제어형 세라믹 자동점적관수시스템의 점적성능)

  • 양원모
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.257-264
    • /
    • 1999
  • The trickling system for automatic and individual watering were made with Bunchungto, Ongito and Backjato. The thickness of ceramics were 1.0, 1.5, 2.0, 2.5 and 3.0mm. And they were fired in a muffle furnace at five different temperatures between 500 and 900'E during 12 hours. The upper plastic parts of sensor consisted of five elements made by steel mold. With the photo fiber sensor attached to datalogger, an accumulated amount of drops for every 10 minutes were recorded. The porosity is higher in the order of Bunchungto, Backjato and Ongito; also, as the firing temperature is higher and the thickness is thicker, the porosity is higher. The ceramic sensors consisted of $SiO_2$ of 54.17~71.62wt.%, A1$_2$ $O_3$ of 15.42~33.79wt.% and the rest of 10wt.%, those were Fe$_2$ $O_3$, CaO, MgO, Na$_2$O, $K_2$O, Ti $O_2$, P$_2$ $O_{5}$. The pattern of dropping were changed according to the variety, thickness and firing temperature of ceramics. As the ceramics were made thicker, the fluctuation of dropping became more rapid, but it did not regularly work at 1mm thickness. As the firing temperature of ceramics became higher, the fluctuation of dropped amount became more rapid.

  • PDF

Plant Growth Responses and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System (벽면형 식물바이오필터 내 식물 생육 및 실내공기질 정화)

  • Jung, Seul Ki;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.665-674
    • /
    • 2015
  • The final goal of this research is to develop a botanical biofiltration system, which combines green interior, biofiltering, and automatic irrigation, which can purify indoor air pollutants according to indoor space and the size of biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be more suitable for indoor space utilization. This study was performed to compare indoor air quality between the space adjacent to a botanical biofilter and the space away from the biofilter (control) without generation of artificial indoor air pollutants, and to evaluate plant growth depending on multiple floors within the biofilter. Each concentration of indoor air pollutants such as TVOCs, monoxide, and dioxide in the space treated with the biofilter was lower than that of control. Dracaena sanderiana ‘Vitoria’ and Epipremnum aureum ‘N Joy’ also showed normal growth responses regardless of multiple floors within the biofilter. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was effective for indoor air purification.

Diagnosis of Irrigation Time Based on Microchange of Stem Diameter in Greenhouse Tomato (온실재배 토마토의 농직경 변화에 의한 관개시기 진단)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 1997
  • Stem diameter and shoot fresh weight of tomato grown in greenhouse were measured non-destructively at 10 minutes interval from 1 to 16 July, 1996 with displacement detector using strain gauges and with suspension-type load cell, respectively, and simultaneously were measured soil water potential, transpiration and solar radiation. Ample water was irrigated before experiment, and thereafter, irrigations were made on the next morning when visual symptoms of wilting appeared. Shoot fresh weight and stem diameter showed very similar patterns in diurnal changes which are characterized by predawn maximum and afternoon minimum and in long- term evolutions, suggesting that stem diameter shrinkage and expansion are closely related to plant water content and growth, respectively, Shoot weight and stem diameter reached minimum values a little later than the time on which transpiration showed maximum. The daily net gains of fresh weight(DG) and stem diameter(DI) showed significantly Positive correlations with solar radiation in those days on which plants were not water-stressed. However, Dl and DG on those days of water stress showed much lower values than expected from the relationships between solar radiation and them. Transpiration was much lower than the expected potential transpiration on 10 July, implying that plants were water-stressed. In this case water stress was not detected from visual symptom of wilting and/or soil water potential, but was able to be identified by the lower DI and DG than the expected. The maximum contraction of stem diameter(MC) and the maximum loss of fresh weight(ML) during daytime showed significantly positive correlations with solar radiation in those days on which plants were not water-stressed and were observed greater than expected from the relationships on severely water-stressed days. But mild water stress could not be discernable by ML and MC. It would be concluded that the daily net gains of fresh weight and/or stem diameter could be used as criteria for diagnosing the water status of tomato and for triggoring the onset of irrigation in automatic system.

  • PDF

Determination of Appropriate Location for Baby Leaf Vegetable in Multi Bench System of Rice Seedling Nursery Facility During High Temperature Periods (다단식 벼육묘시설을 활용한 고온기 어린잎채소 재배 적정 위치 선발)

  • Kim, Jae Kyung;Kim, Il Seop;Kang, Ho Min;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.286-292
    • /
    • 2019
  • This study aimed to investigate the suitable of layer on growth of six baby leaf vegetables using existing facilities and equipment in rice seedling nursery. Three kinds of Lactuca(lettuce 'Jinppallola' and 'Romain white', and indian lettuce), two of Brassica(tatsoi and red tatsoi) and amaranth were used as the materials. After sowing, the rice seedling tray was placed in multi bench system($L120{\times}W60{\times}H195cm$, 10th floor), which were low(1st) layer above 15cm, middle(4th) layer above 115cm and high(7th) layer above 175cm apart from ground. Irrigation was sprayed 2~3 times a day using a automatic irrigation system. The growth characteristics and leaf color were investigated when leaf vegetables were reached the optimum size(within 10cm of plant height). During the culture periods(29th Jun.~31th Jul. 2017), daytime average temperature was $27.4{\sim}28.3^{\circ}C$ regardless of layers but solar irradiance was higher in the high-layer than low and middle-layer of 37% and 22%, respectively. The leaf length, leaf width and number of leaves in middle and high-layer have a tendency to increase but, fresh weight was different according to the layer. When the correlation between accumulation radiation and growth was analyzed, all of growth factor of Amaranth showed a high correlation and other cultivars showed correlation with each growth factors. As a result, It is suitable that amaranth and red tatsoi for high-layer, Indian lettuce and tatsoi for middle and high-layer and 'Romain white' for middle-layer. The growth of red lettuce 'Jinppallola' was good at low layer, but leaf color expression was poor. So the high layer is suitable for 'Jinppallola'.