• Title/Summary/Keyword: Automatic irrigation control system

Search Result 28, Processing Time 0.029 seconds

Development of an Automatic Irrigation Control System in Protected Horticulture (시설원예에 있어서 물관리 지동화 시스템 개발)

  • 김경수;이기명;장익주
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.61-71
    • /
    • 1992
  • This study is performed to develop an automatic irrigation control of system for effective water management in greenhouse. The automatic irrigation control system is composed of an IR-RED optical sensor in tensiometer and an One-chip micro controller. The following results are obtained : 1. A practical IR-RED optical sensor in tensiometer, which shows the starting point of irrigation, was developed. 2. The automatic irrigation system with the optical sensor and One-chip micro controller was developed and also designed to be able to combine with the control system for temperature, curtain opening, etc. 3. A multiple irrigation control system for several greenhouses were suggested. 4. The results of the system test with the driving program for automatic water management were excellent.

  • PDF

A Study for the Automatic Control System in Greenhouse Using Microcomputer(IV) -Application of a Controller for the Automatic Control System- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 연구(IV) -자동화 시스템용 종합제어기의 응용-)

  • 김진현;김철수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.288-298
    • /
    • 1995
  • In greenhouse vegetable, the automatic control in cultivating environment has been projected as a national business ; especially a countermeasure against the settlement of UR negotiation. Because it makes possible to manage a large greenhouse with family-hands and to expect the betterment of quality and the increasement of harvest in crops. In the course of carrying the workout, however, there are many problems with the overall control system with computers as well as the individual systems for environment control because of hardware and software problems : especially the shortage of data for development of the system is most serious. Among the many problems for development of the automatic control system, the automations of irrigation, liquefied fertilizer and chemical solution, mixing and ventilation, etc and the development of the general automatic controller system for environment control in greenhouse are studied, which requires a lot of tabors. The results are summarized as follows ; 1. In moisture control by the soil moisture meter, the error was shown 10 % in the beginning irrigation point and 19 % in the stop irrigation point. 2. The supply of liquefied fertilizers with the irrigation system was excellent by setting the operating time and the mixing ratio. 3. The developed chemical spraying system was operated well, but not perfect in nozzle positions. 4. The cucumber was cultivated properly with the trickle irrigation system. 5. The developed controller for the automatic control system in greenhouse was remarkable in the part of hardware, but more researches are needed in the part of software.

  • PDF

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF

Development of an Automatic Water Control System for Greenhouse Soil Water Content Management (시설재배 토양의 수분 조절을 위한 자동 수분제어시스템 개발)

  • Lee, D.H.;Lee, K.S.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.115-123
    • /
    • 2008
  • This study was conducted to develop an automatic soil water content control system for greenhouse, which consisted of drip irrigation nozzles, soil water content sensors, an on/off valve, a servo-motor assembly and a control program. The control logic adopted in the system was Ziegler-Nichols algorithm and rising time, time constant and over/undershoot ratio as control variables in the system was selected and determined by various control experiments to maintain small delay time and low overshoot. Based on the experimental results, it was concluded that the control system developed in the study could replace the unreliable conventional greenhouse soil water management.

A Microcomputer-Based Control System for Green House (I) -Water Management- (시설원예(施設園藝)에 있어서 재배관리(栽培管理)의 자동화(自動化) 시스템에 관(關)한 연구(硏究) (I) -물관리 자동화(自動化)-)

  • Lee, K.M.;Park, K.S.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.1
    • /
    • pp.31-36
    • /
    • 1986
  • As a part of study on automatic control system for green houses, an automatic irrigation system was developed by using microcomputer. For the study, gypsum block was used as a sensing device of soil moisture and its data was designed to transfer to microcomputer through A/D converter. Also, software which be able to control the irrigation time and flow rate by the solenoid valve was developed. This system was tested by using practical data and the following results were summarized. 1. Since the gypsum was very accurate in addition with chiep and easy to manufacture, it turned out to be a very good device to detect the soil moisture in this system. 2. Also, solenoid valve was very excellent device for controlling the water flow rate since its control error is less then 1% when the irrigation time is over 100 seconds.

  • PDF

A Study on the Automatic Irrigation Control System in the Vinyl-House Cultivation Utilizing Microcomputer (마이크로컴퓨터를 이용한 시설원예작물 재배의 관개자동화에 관한 연구)

  • Kim, C.S.;Kim, J.H.;Chung, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.2
    • /
    • pp.128-136
    • /
    • 1989
  • The purpose of this study was to develop a computer operated automatic drip irrigation system for application in vinyl-house cultivation. The results can be summarized as follows: 1) The T-type ice compensation wire was used to measure the temperature. The voltage level measured up to 0.02 volt was used as input to an 8-bit A/D converter. 2) A specially devised tensiometer was used to content the watering system. When the needle of the pressure gauge reaches the lower threshold position it turns on the pumping system and turns off when it reaches higher threshold position. 3) In order to use the multiple gypsum blocks for one transducer, reed relays and a D/O board were used to make the sequential switching possible. 4) It was possible to automate the trickle irrigation system for the whole growth period of vinyl-house crops with the help of microcomputer. 5) In terms of furrow irrigation, the irrigation water consumption was the smallest, 2.8 times less than conventional method of surface trickle irrigation, 3.4 times less than subsurface trickle irrigation method. 6) In terms of productivity of cucumber, there was a drop in productivity when compared to furrow irrigation method, 7.2% for surface trickle irrigation, 27.4% for subsurface irrigation method.

  • PDF

Construction and basic performance test of an ICT-based irrigation monitoring system for rice cultivation in UAE desert soil

  • Mohammod, Ali;Md Nasim, Reza;Shafik, Kiraga;Md Nafiul, Islam;Milon, Chowdhury;Jae-Hyeok, Jeong;Sun-Ok, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.703-718
    • /
    • 2021
  • An irrigation monitoring system is an efficient approach to save water and to provide effective irrigation scheduling for rice cultivation in desert soils. This research aimed to design, fabricate, and evaluate the basic performance of an irrigation monitoring system based on information and communication technology (ICT) for rice cultivation under drip and micro-sprinkler irrigation in desert soils using a Raspberry Pi. A data acquisition system was installed and tested inside a rice cultivating net house at the United Arab Emirates University, Al-Foah, Al-Ain. The Raspberry Pi operating system was used to control the irrigation and to monitor the soil water content, ambient temperature, humidity, and light intensity inside the net house. Soil water content sensors were placed in the desert soil at depths of 10, 20, 30, 40, and 50 cm. A sensor-based automatic irrigation logic circuit was used to control the actuators and to manage the crop irrigation operations depending on the soil water content requirements. A developed webserver was used to store the sensor data and update the actuator status by communicating via the Pi-embedded Wi-Fi network. The maximum and minimum average soil water contents, ambient temperatures, humidity levels, and light intensity values were monitored as 33.91 ± 2 to 26.95 ± 1%, 45 ± 3 to 24 ± 3℃, 58 ± 2 to 50 ± 4%, and 7160-90 lx, respectively, during the experimental period. The ICT-based monitoring system ensured precise irrigation scheduling and better performance to provide an adequate water supply and information about the ambient environment.

Growth and Development of Platycodon grandiflorus under Sensor-based Soil Moisture Control on Open Farmland and Pot Conditions

  • Lee, Ye-Jin;Kim, Kyeong-Soo;Lim, So-Hee;Yu, Young-Beob;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.608-615
    • /
    • 2021
  • Soil moisture control system including soil sensing and automatic water supply chain was constructed on open farmland and pot conditions. Soil moisture was controlled by the system showing over the soil moisture contents except 40% treatment. EC was gradually decreased by increasing cultivation days. On applying this system to control soil moisture, the growth and development characters of the bellflower were improved compared with control, cultivation without the automatic irrigation. Of the growth and development characters, plant height with water treatments was higher than that of control in 1st-year plants. Moreover, numbers of branch were increased by the increased soil moisture on farmland and pot condition. Capsule numbers for seed were best at 20%, 30% soil moisture treatment in 1st-year plants, and 20% to 50% treatment in 2nd-year plants. The construction of automatic soil moisture control system provide fundamental data for plant growth and development on open farmland soil condition.

Development of Precision Overhead Watering and Boom Irrigation System for Fruit Vegetable Seedlings (과채류 육묘용 정밀 두상관수 시스템 개발)

  • Dong Hyeon Kang;Soon Joong Hong;Dong Eok Kim;Min Jung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • This study was conducted to develop a precision automatic irrigation system in a nursery by considering the problems and improvements of manual and the conventional automatic irrigation system. The amount of irrigated water between the conventional automatic irrigation system and manual irrigation was 28.7 ± 4.4 g and 14.2 ± 4.3 g, respectively, and the coefficient of variation was less than 30%. However, the coefficient of variation of the conventional automatic irrigation system of 15%, was higher than that of manual irrigation of 30%. The irrigation test using the developed uniform irrigation system attached with the nozzle of a spray angle 80° and most highest uniformity was at height 600 mm. And coefficient of variation of the irrigation uniformity at the center part was within 20%, but irrigation amount of the edge part was lower 50% and over compared to the center part. As a result of a tomato grafting seedling cultivation test using the developed uniform irrigation system, the average plant height of seedling at the edge part was 28 mm but plant height at the center part was higher as 72 mm. Therefore, it was necessary to apply additional irrigation device at the edge part. The irrigation uniformity of the edge concentrated irrigation system was investigated that the irrigation amount of the edge part was irrigated by more than 50% compared with the center part, and coefficient of variation of the irrigation amount at the center part was less than 30%. As a result of a cucumber grafting seedling cultivation test using the edge concentrated irrigation system, the plant height of seedlings in the edge and central part of cultivation bed were 24% and 26%, respectively, so irrigation uniformity was higher then the uniform irrigation system. In order to improve the uniformity of seedlings, it is necessary to adjust the height of boom according to the growth of the seedling by installing a distance sensor in the overhead watering and boom irrigation system.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM PART I

  • Uenaka, T.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.757-763
    • /
    • 2000
  • It is fundamental to control individual condition of every seedling. Automatic individual control is used by data control and analysis at on-line. As a result the best condition system was build without all waste. This system uses one of new technology irrigation system. This irrigation system supply accurate quantity of nutrient solution in the shortest time. The system named the upward injection irrigation system. First of all it is necessary to be considered whether the soil is proper or improper for upward injection irrigation system. It is important that root absorb nutrient solution as fast as possible. The ability of spreading, storing water, contamination of environment and cost were considered when choose the medium. The soil of organic culture is developed recently. The soil consists of paper pulp and vermiculite. The new soil is more suitable than ordinary medium for growing plant because this medium is made of paper pulp. The ability of store and spread of water is it's feature. We can make paper tray of this paper pulp's raw material. It is possible that pulp tray replaced plastic tray. The original plug tray of growing seedling system can make which consist of pulp medium and pulp tray. In this study, it was examined whether the plug seedling of paper pulp medium grow with upward injection irrigation system in this seedling plant system. At the same time, examine ability of store and spread of water and how to grow plant on the paper pulp medium.

  • PDF