• Title/Summary/Keyword: Automatic collision avoidance

Search Result 73, Processing Time 0.024 seconds

Experiment on Track-keeping Performance using Free Running Model Ship (모형 선박을 이용한 선박 침로유지 실험 연구)

  • Im, Nam-Kyun;Tran, Van-Luong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.221-226
    • /
    • 2012
  • This research presents an analysis of algorithm for ship track-keeping along a given trajectory. The maneuver of a free running model ship guiding through a simple path are presented. In order to solve the above problem, a desired trajectory is usually determined by GPS points in a pre-fixed place then these points are set in a pre-programmed navigation so that the ship would be automatically tracked. Proportional-Derivative(PD) control which is useful for fast response controllers was used in this program as a course keeping system. A high accuracy GPS receiver was installed on the model ship that could provide positions frequently, the system will compare and give out the remaining distance and heading to the target way-point. The results of ship auto track-keeping experiment will be explained in order to illustrate the adjustment in controlling parameters. These results can be utilized as a preliminary step to carry out the experiment of ship collision avoidance system and automatic berthing in the future.

A Channel Allocation Protocol for Collision Avoidance between Reader in 2.4GHz Multiple Channel Active RFID System (2.4GHz 다중채널 능동형RFID시스템에서 리더간 충돌회피를 위한 채널 할당 프로토콜)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.139-142
    • /
    • 2009
  • RFID(Radio Frequency IDentification) technology is an automatic identification method using radio frequencies between RFID reader which collects the information and tag which transmits the information. RFID technology develops passive RFID which transmit the only ID to active RFID which transmit the additional information such as sensing information. However, ISO/IEC 18000-7 as active RFID standard has a problem which cannot use multiple channel. To solve this problem, we use the 2.4GHz bandwidth technology and we propose the dynamic channel allocation method which can efficiently allot a channel. we show the operation of the dynamic channel allocation method through design and implement with CC2500DK of Taxas Instrument.

  • PDF

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.