• Title/Summary/Keyword: Automatic Weather Station (AWS)

Search Result 105, Processing Time 0.032 seconds

Prediction of Annual Energy Production of Gangwon Wind Farm using AWS Wind Data (AWS 풍황데이터를 이용한 강원풍력발전단지 연간에너지발전량 예측)

  • Woo, Jae-kyoon;Kim, Hyeon-Gi;Kim, Byeong-Min;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.72-81
    • /
    • 2011
  • The wind data obtained from an AWS(Automated Weather Station) was used to predict the AEP(annual energy production) of Gangwon wind farm having a total capacity of 98 MWin Korea. A wind energy prediction program based on the Reynolds averaged Navier-Stokes equation was used. Predictions were made for three consecutive years starting from 2007 and the results were compared with the actual AEPs presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from the prediction program were close to the actual AEPs and the errors were within 7.8%.

Effects of Network Density on Gridded Horizontal Distribution of Meteorological Variables in the Seoul Metropolitan Area (관측망 밀도가 기상 자료의 격자형 수평 분포에 미치는 영향)

  • Kang, Minsoo;Park, Moon-Soo;Chae, Jung-Hoon;Min, Jae-Sik;Chung, Boo Yeon;Han, Seong Eui
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.183-196
    • /
    • 2019
  • High-quality and high-resolution meteorological information is essential to reduce damages due to disastrous weather phenomena such as flash flood, strong wind, and heat/cold waves. There are many meteorological observation stations operated by Korea Meteorological Administration (KMA) in Seoul Metropolitan Area (SMA). Nonetheless, they are still not enough to represent small-scale weather phenomena like convective storm cells due to its poor resolution, especially over urban areas with high-rise buildings and complex land use. In this study, feasibilities to use additional pre-existing networks (e.g., operated by local government and private company) are tested by investigating the effects of network density on the gridded horizontal distribution of two meteorological variables (temperature and precipitation). Two heat wave event days and two precipitation events are chosen, respectively. And the automatic weather station (AWS) networks operated by KMA, local-government, and SKTechX in Incheon area are used. It is found that as network density increases, correlation coefficients between the interpolated values with a horizontal resolution of 350 m and observed data also become large. The range of correlation coefficients with respect to the network density shows large in nighttime rather than in daytime for temperature. While, the range does not depend on the time of day, but on the precipitation type and horizontal distribution of convection cells. This study suggests that temperature and precipitation sensors should be added at points with large horizontal inhomogeneity of land use or topography to represent the horizontal features with a resolution higher than 350 m.

Comparative Study on the Accuracy of Surface Air Temperature Prediction based on selection of land use and initial meteorological data (토지이용도와 초기 기상 입력 자료의 선택에 따른 지상 기온 예측 정확도 비교 연구)

  • Hae-Dong Kim;Ha-Young Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.435-442
    • /
    • 2024
  • We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).

Development of Virtual Ambient Weather Measurement System for the Smart Greenhouse (스마트온실을 위한 가상 외부기상측정시스템 개발)

  • Han, Sae-Ron;Lee, Jae-Su;Hong, Young-Ki;Kim, Gook-Hwan;Kim, Sung-Ki;Kim, Sang-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.5
    • /
    • pp.471-479
    • /
    • 2015
  • This study was conducted to make use of Korea Meteorological Administration(KMA)'s Automatic Weather Station(AWS) data to operate smart green greenhouse. A Web-based KMA AWS data receiving system using JAVA and APM_SETUP 8 on windows 7 platform was developed. The system was composed of server and client. The server program was developed by a Java application to receive weather data from the KMA every 30 minutes and to send the weather data to smart greenhouse. The client program was developed by a Java applets to receive the KMA AWS data from the server every 30 minutes through communicating with the server so that smart greenhouse could recognize the KMA AWS data as the ambient weather information. This system was evaluated by comparing with local weather data measured by Inc. Ezfarm. In case of ambient air temperature, it showed some difference between virtual data and measured data. But, the average absolute deviation of the difference has a little difference as less than 2.24℃. Therefore, the virtual weather data of the developed system was considered available as the ambient weather information of the smart greenhouse.

Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area (자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포)

  • Hong, Je-Woo;Hong, Jinkyu;Lee, Seong-Eun;Lee, Jaewon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.

Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in Capital Area (수도권 AWS 기온을 이용한 MODIS, Landsat 위성의 지표면 온도 분석)

  • Jee, Joon-Bum;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.315-329
    • /
    • 2014
  • In order to analyze the Land Surface Temperature (LST) in metropolitan area including Seoul, Landsat and MODIS land surface temperature, Automatic Weather Station (AWS) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error and linear regression etc. Statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and Root Mean Squared Error (RMSE) of 4.61 K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28 K and 2.25 K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the linear regression function have 0.45 (Landsat) and 1.02 (MODIS), respectively. Especially, Landsat 5 has lower correlation about 0.5 or less in entire station, but Landsat 8 have a higher correlation of 0.5 or more despite of lower match point than other satellites. Landsat 7 have highly correlation of more than 0.8 in the center of Seoul. Correlation between satellite LSTs and AWS temperature with landuse (urban and rural) have 0.8 or higher. Landsat LST have correlation of 0.84 and RMSE of more than 3.1 K, while MODIS LST have correlation of more than 0.96 and RMSE of 2.6 K. Consequently, the difference between the LSTs by two satellites have due to the difference in the optical observation and detection the radiation generated by the difference in the area resolution.

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

Assessment of Inundation Rainfall Using Past Inundation Records and CCTV Images (CCTV영상과 과거침수기록을 활용한 침수 강우량 평가 - 강남역을 중심으로 -)

  • Kim, Min Seok;Lee, Mi Ran;Choi, Woo Jung;Lee, Jong Kook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.567-574
    • /
    • 2012
  • For the past few years, the video surveillance market has shown a rapid growth due to the increasing demand for Closed Circuit Television(CCTV) by the public sector and the private security industry. While the overall utilization of CCTV in the public and private sectors is expanding, its usage in the field of disaster management is less than sufficient. Therefore, the authors of this study, in an effort to revisit the role of CCTV in disaster situations, have carried out a case analysis in the vicinity of the Gangnam Station which has been designated as a natural disaster-prone area. First, the CCTV images around the target location are collected and the time and depth of inundation are measured through field surveys and image analyses. Next, a rainfall analysis was conducted using the Automatic Weather Station(AWS) data and the past inundation records. Lastly, the authors provide an estimate of rainfall for the areas around the station and suggest viable warning systems and countermeasures. The results from this study are expected to make positive contributions towards a significant reduction of the damages caused by the floods around the Gangnam Station.

A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning (머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구)

  • Lee, Seung Woon;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1071-1081
    • /
    • 2021
  • In addition to the current quality control procedures for the weather observation performed by the Korea Meteorological Administration (KMA), this study proposes quality inspection standards for Internet of Things (IoT) urban weather observed data based on machine learning that can be used in smart cities of the future. To this end, in order to confirm whether the standards currently set based on ASOS (Automated Synoptic Observing System) and AWS (Automatic Weather System) are suitable for urban weather, usability was verified based on SKT AWS data installed in Seoul, and a machine learning-based quality control algorithm was finally proposed in consideration of the IoT's own data's features. As for the quality control algorithm, missing value test, value pattern test, sufficient data test, statistical range abnormality test, time value abnormality test, spatial value abnormality test were performed first. After that, physical limit test, stage test, climate range test, and internal consistency test, which are QC for suggested by the KMA, were performed. To verify the proposed algorithm, it was applied to the actual IoT urban weather observed data to the weather station located in Songdo, Incheon. Through this, it is possible to identify defects that IoT devices can have that could not be identified by the existing KMA's QC and a quality control algorithm for IoT weather observation devices to be installed in smart cities of future is proposed.

Establishment of Pest Forecasting Management System for the Improvement of Pass Ratio of Korean Exporting Pears

  • Park, Joong Won;Park, Jeong Sun;Kang, Ah Rang;Na, In Seop;Cha, Gwang Hong;Oh, Hwan Jung;Lee, Sang Hyun;Yang, Kwang Yeol;Kim, Wol Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • A decrease in pass ratio of Korean exporting pears causes several negative effects including an increase in pesticide dependency. In this study, we attempted to establish the pest forecasting management system, composed of weekly field forecasting by pear farmers, meteorological data obtained by automatic weather station (AWS), newly designed internet web page ($\underline{http://pearpest.jnu.ac.kr/}$) as information collecting and providing ground, and information providing service. The weekly field forecasting information on major pear diseases and pests was collected from the forecasting team composed of five team leaders from each pear exporting complex. Further, an abridged weather information for the prediction of an infestation of major disease (pear scab) and pest (pear psylla and scale species) was obtained from an AWS installed at Bonghwang in Naju City. Such information was then promptly uploaded on the web page and also publicized to the pear famers specializing in export. We hope this pest forecasting management system increases the pass ratio of Korean exporting pears throughout establishment of famer-oriented forecasting, inspiring famers' effort for the prevention and forecasting of diseases and pests occurring at pear orchards.