• Title/Summary/Keyword: Automatic Tool Changer

검색결과 35건 처리시간 0.021초

Development of Hybrid-FDM Process Using Automatic Tool Changer for Multi-Material Production and Post-Processing (자동공구교환장치를 이용한 융합 FDM 공정 및 장치개발에 관한 연구)

  • Choi, Sung Min;Jian, Xiao;Park, In Baek;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제33권3호
    • /
    • pp.235-242
    • /
    • 2016
  • The purpose of this study is an attempt to improve the functionality of a conventional Fused Deposition Modeling (FDM) process using the Automatic Tool Changer (ATC) to perform multimaterial production and post-processing. Hybrid-FDM means a fusion of an Additive Manufacturing process and grinding process using the ATC system. In order to enhance the potentiality of production capacity for multi-material fabrication and surface roughness improvement, two extrusion tools and one grinding tool system are suggested. A pneumatic chuck is attached on a moving platform in the XY axes plane and an extrusion head and grinding head are placed in a docking station, allowing for a quick changeover with each other. Therefore, the manufacturing lead time can be reduced efficiently for the fabrication of a product.

A study on the Design of Drum Type Automatic Tool Changer (드럼형 자동공구교환장치의 설계에 관한 연구)

  • Choi, Hyun-Jin;Lee, Han-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권7호
    • /
    • pp.52-59
    • /
    • 2020
  • Automatic tool changers (ATCs) can be divided into drum and chain types. Drum-type ATCs contain a magazine, where the tools are mounted, and a cam gearbox, which swaps the tools via roller gear and grooved plate cams. Drum-type ATCs are advantageous in that the operating time for the tool magazine is more rapid than that of chain-type ATCs and the length of the unit is shorter. Thus, drum-type ATCs can be fabricated into various shapes and forms depending on the number of tools and the magazine size in accordance with machining center requirements and consumer demand. In particular, the price competitiveness of a machining center with a drum-type ATC is higher, while drum-type ATCs are more rigid with fewer parts, possibly reducing the need for regular servicing. This study aims to verify the structural stability and design validity of the magazine base, which is the main structure of a drum-type ATC, using finite element analysis. This study kinematically verifies the specifications of the selected drive motor and reducer and assessed the design of the cam gearbox. It also conducts a structural analysis of the roller camp, which is the core component of the cam gearbox, based on the results of the kinetodynamic analysis, thus validating the structural design.

Dynamic Modeling of a Novel ATC Mechanism based on 4-bar Linkage (4절링크를 기반으로 하는 신개념 ATC 메커니즘의 동역학 해석)

  • Lee, Sangho;Kim, Jong-Won;Seo, TaeWon;Kim, Jongwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제22권4호
    • /
    • pp.307-314
    • /
    • 2016
  • Recently, demands on the tapping machine are increased due to the case of a cell phone is changed to metal such as aluminum. The automatic tool changer (ATC) is one of the most important devices for the tapping machine related to the speed and energy consumption of the machine. To reduce the consumed energy and vibration, the dynamic modeling is essential for the ATC. In this paper, inverse dynamic modeling of a novel ATC mechanism is introduced. The proposed ATC mechanism is composed of a double four-bar mechanism with a circular tablet to generate continuous rotation of the tablet. The dynamic modeling is performed based on the Lagrange equation with a modeling for the contact between the four-bar and the tablet. Simulation results for various working conditions are proposed and analyzed for the prototype design. The dynamic modeling can be applied to determine the proper actuator and to reduce the vibration and consumed energy for the ATC machine.

Development of CNC Grinding Center (CNC 그라인딩 센터의 개발)

  • 유정봉
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.30-35
    • /
    • 1997
  • CNC Grinding Center is developed to improve the flexibility of grinding process and to obtain the high machine accuracy in grinding processes. It consists of a built-in type spindle with max. 25,000 rpm, ATC(automatic tool changer) for quick and reliable loading/unloading of tools, a rotary dresser for trueing, dressing, and personal computer based CNC controller, etc. This research concentrates on the machine structure, the evaluation of efficiency, and the machining technology of the developed prototype

  • PDF

A Study on the Development and Performance Evaluation of an ATC Test Bench (ATC Test Bench 개발 및 성능평가에 관한 연구)

  • Kim, Jae-Hyun;Choi, Jun-Young;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제29권5호
    • /
    • pp.489-493
    • /
    • 2012
  • Automatic tool changers(ATCs) store tools used in a machining center to its magazine and changes the tools automatically. Tools of machine centers are changed and then precisely equipped to spindle system by the ATC. Therefore, the stability and reliability of the ATC is very important. But, there is lack of development and evaluation on basic performance and vibration of the ATCs. So, in this study, a BT40 ATC test bench was developed to verify stability and reliability of BT40 ATCs.

A basic study on the application of the softwired sequence control to the interface of NC mahine tool (NC공작기계 Interface의 Softwired Sepuence Control화를 위한 기초연구)

  • ;;Lee, Hyung Sik;Hyun, Chang Hyun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제5권3호
    • /
    • pp.207-216
    • /
    • 1981
  • Recently in some nations, the interface of NC machine tool is by applying the softwired sequence control method which employs the PLE(Programmable Logic Controller) instead of the hardwired sequence control method. Due to this replacament, the funcion of the interface of NC machine tool has been improved in many respects. In order to accomplish such as improvement of the function of the interface and to develop the PLC, this paper deals with how to apply the sofrwired sequence control method that employs microcumputer to the interface of ATC(Automatic Tool Changer) which is a part of NC lathe.

A Study on the Design of Compression Air Hole in Front of Spindle for Chip Removal (주축 전면부 칩 제거를 위한 압축공기 구멍 설계에 관한 연구)

  • Kang, Dong Wi;Lee, Choon Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제30권3호
    • /
    • pp.278-283
    • /
    • 2013
  • While Built-in Spindle is working in machining center, the tool is changed by ATC(Automatic Tool Changer) automatically. However, impurities could be stacked in front of spindle because of chips formation while machining, and positional error between spindle and tool could be generated. Compressed air holes are necessary for removal of the impurities. But, the diameter and number of compressed air hole are different for each built-in spindle in market. In this paper, flow analysis is carried out to find out the efficient figuration of the compressed air hole by using velocity and pressure distributions.

Implementation of automatic mode for remote impact wrench task (로보트를 이용한 원격조작 임팩트렌치 작업의 자동수행 기능부 구현)

  • 박영수;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.832-837
    • /
    • 1991
  • After many years of proliferation, the nuclear industry is indebted for a formidable consequence, the safe management of spent fuel. Naturally, the high radioactivity involved with such process motivates the development of effective telerobotic systems. Nevertheless, the existing master-slave type of tele manipulators are limited in effectiveness by the human operator's limited sensory and manipulation capabilities. This paper presents the result of a research effort to resolve such problems by assigning the slave manipulator a certain degree of intelligence; sensing and actuation. In the presented system, a perception-action loop is achieved using ultrasonic range sensor and laser distance sensor interfaced with the PUMA 760 industrial robot system, and applied to automating impact wrenching task for unbolting the lid of nuclear spent fuel cask. The perception-action loop performs determination of the cask location, collision avoidance and centering of the impact wrench onto the bolt head. To aid the insertion task and to provide versatility a mounting module consisting of an RCC device and an automatic tool changer is designed and implemented. The performance of the developed system is tested on the model cask and the result is given.

  • PDF

Development of Control System of High-speed ATC of Machining Center (Machining Center의 고속 ATC 제어 시스템의 개발)

  • Han, Dong-Chang;Lee, Dong-Il;Song, Yong-Tae;Lee, Seok-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제19권9호
    • /
    • pp.125-132
    • /
    • 2002
  • We use a compound-cam twin arm structure and random tool access method to achieve a faster ATC (Automatic Tool Changer) system for the accurate position and rotation control of a tool magazine and an exchange am. Based on the data obtained from various sensors, it is possible to follow the sequence of commands in each control step for an exchange arm. However, it is not so easy to reduce the exchange time of the system because of the slow responses of the sensors and execution mode delays of PLC (Programmable Logic Controller) scan time. In this paper, we propose a new programmed limit-switch position control method to obtain the shortest possible delays for the random tool access method and compound-cam twin arm structure. With some experimental results, we have achieved below 0.9sec tool exchange time with the proposed method.

A Study on Measurement of Linear Cycle Plane Positioning Accuracy of NC Lathe (NC선반의 직선 사이클 평면 위치결정 정도 측정에 관한 연구)

  • 김영석;송인석;정정표;한지희;윤원주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제12권2호
    • /
    • pp.53-58
    • /
    • 2003
  • It is very important to measure linear cycle plane positioning accuracy of NC lathe as it effects all other parts of machines machined by them in industries. If the plane positioning accuracy of NC lathe is bad, the dimension accuracy and the change-ability of works will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear cycle plane positioning displacement of ATC(Automatic tool changer) on zx plane of NC lathe using two linear scales. And each sets of error data obtained from the test is descriptions to plots and the results of linear cycle plane positioning errors are expressed as nutriments by computer treatment.