• Title/Summary/Keyword: Automatic Summarization

Search Result 95, Processing Time 0.022 seconds

Method to improve the Quality of Training Data for Automatic Summarization of Judgments (판결문 자동요약을 위한 학습 데이터의 품질 개선방안)

  • Sang-Young Go
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.461-464
    • /
    • 2022
  • 법원도서관이 발간하는 판례공보를 기반으로 판결문 자동요약을 위한 학습 데이터들이 구축되고 있다. 그런데 판결문 요약에서는 뉴스 요약과는 달리 추출요약과 생성요약 방식이 함께 사용되는 특수성이 있고, 이러한 특수성 때문에 현재 판결문 요약 데이터셋이 요약 프로그램의 성능 향상을 이끌지 못하고 있다고 생각된다. 따라서 법률가들이 판결문을 요약하는 방식을 반영하여, 추출요약 방식으로 작성된 판결요지와 생성요약 방식으로 작성된 판결요지를 분리해서 요약 데이터셋을 만들 필요가 있다. 추출요약과 생성요약에 관한 데이터셋을 따로 구축하기 위해서는 판례공보의 판결요지를 추출요약과 생성요약으로 분류하는 작업이 필요한데, 감성 분석에 사용되는 알고리즘이 판결요지의 분류 작업에 응용될 수 있다는 것을 실험 결과로 알 수 있었다.

  • PDF

Korean Pre-trained Model KE-T5-based Automatic Paper Summarization (한국어 사전학습 모델 KE-T5 기반 자동 논문 요약)

  • Seo, Hyeon-Tae;Shin, Saim;Kim, San
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.505-506
    • /
    • 2021
  • 최근 인터넷에서 기하급수적으로 증가하는 방대한 양의 텍스트를 자동으로 요약하려는 연구가 활발하게 이루어지고 있다. 자동 텍스트 요약 작업은 다양한 사전학습 모델의 등장으로 인해 많은 발전을 이루었다. 특히 T5(Text-to-Text Transfer Transformer) 기반의 모델은 자동 텍스트 요약 작업에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 본 논문에서는 방대한 양의 한국어를 학습시킨 사전학습 모델 KE-T5를 활용하여 자동 논문 요약을 수행하고 평가한다.

  • PDF

Investigating an Automatic Method in Summarizing a Video Speech Using User-Assigned Tags (이용자 태그를 활용한 비디오 스피치 요약의 자동 생성 연구)

  • Kim, Hyun-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.46 no.1
    • /
    • pp.163-181
    • /
    • 2012
  • We investigated how useful video tags were in summarizing video speech and how valuable positional information was for speech summarization. Furthermore, we examined the similarity among sentences selected for a speech summary to reduce its redundancy. Based on such analysis results, we then designed and evaluated a method for automatically summarizing speech transcripts using a modified Maximum Marginal Relevance model. This model did not only reduce redundancy but it also enabled the use of social tags, title words, and sentence positional information. Finally, we compared the proposed method to the Extractor system in which key sentences of a video speech were chosen using the frequency and location information of speech content words. Results showed that the precision and recall rates of the proposed method were higher than those of the Extractor system, although there was no significant difference in the recall rates.

Product Evaluation Summarization Through Linguistic Analysis of Product Reviews (상품평의 언어적 분석을 통한 상품 평가 요약 시스템)

  • Lee, Woo-Chul;Lee, Hyun-Ah;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.93-98
    • /
    • 2010
  • In this paper, we introduce a system that summarizes product evaluation through linguistic analysis to effectively utilize explosively increasing product reviews. Our system analyzes polarities of product reviews by product features, based on which customers evaluate each product like 'design' and 'material' for a skirt product category. The system shows to customers a graph as a review summary that represents percentages of positive and negative reviews. We build an opinion word dictionary for each product feature through context based automatic expansion with small seed words, and judge polarity of reviews by product features with the extracted dictionary. In experiment using product reviews from online shopping malls, our system shows average accuracy of 69.8% in extracting judgemental word dictionary and 81.8% in polarity resolution for each sentence.

Automatic Text Categorization using the Importance of Sentences (문장 중요도를 이용한 자동 문서 범주화)

  • Ko, Young-Joong;Park, Jin-Woo;Seo, Jung-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.6
    • /
    • pp.417-424
    • /
    • 2002
  • Automatic text categorization is a problem of assigning predefined categories to free text documents. In order to classify text documents, we have to extract good features from them. In previous researches, a text document is commonly represented by the frequency of each feature. But there is a difference between important and unimportant sentences in a text document. It has an effect on the importance of features in a text document. In this paper, we measure the importance of sentences in a text document using text summarizing techniques. A text document is represented by features with different weights according to the importance of each sentence. To verify the new method, we constructed Korean news group data set and experiment our method using it. We found that our new method gale a significant improvement over a basis system for our data sets.

A Rule-based Approach to Identifying Citation Text from Korean Academic Literature (한국어 학술 문헌의 본문 인용문 인식을 위한 규칙 기반 방법)

  • Kang, In-Su
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.4
    • /
    • pp.43-60
    • /
    • 2012
  • Identifying citing sentences from article full-text is a prerequisite for creating a variety of future academic information services such as citation-based automatic summarization, automatic generation of review articles, sentiment analysis of citing statements, information retrieval based on citation contexts, etc. However, finding citing sentences is not easy due to the existence of implicit citing sentences which do not have explicit citation markers. While several methods have been proposed to attack this problem for English, it is difficult to find such automatic methods for Korean academic literature. This article presents a rule-based approach to identifying Korean citing sentences. Experiments show that the proposed method could find 30% of implicit citing sentences in our test data in nearly 70% precision.

A Study on the Construction of the Automatic Summaries - on the basis of Straight News in the Web - (자동요약시스템 구축에 대한 연구 - 웹 상의 보도기사를 중심으로 -)

  • Lee, Tae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.4 s.62
    • /
    • pp.41-67
    • /
    • 2006
  • The writings frame and various rules based on discourse structure and knowledge-based methods were applied to construct the automatic Ext/sums (extracts & summaries) system from the straight news in web. The frame contains the slot and facet represented by the role of paragraphs, sentences , and clauses in news and the rules determining the type of slot. Rearrangement like Unification, separation, and synthesis of the candidate sentences to summary, maintaining the coherence of meanings, was carried out by using the rules derived from similar degree measurement, syntactic information, discourse structure, and knowledge-based methods and the context plots defined with the syntactic/semantic signature of noun and verb and category of verb suffix. The critic sentence were tried to insert into summary.

Automatic Extraction and Usage of Terminology Dictionary Based on Definitional Sentences Patterns in Technical Documents (기술문서 정의문 패턴을 이용한 전문용어사전 자동추출 및 활용방안)

  • Han, Hui-Jeong;Kim, Tae-Young;Doo, Hyo-Chul;Oh, Hyo-Jung
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.81-99
    • /
    • 2017
  • Technical documents are important research outputs generated by knowledge and information society. In order to properly use the technical documents properly, it is necessary to utilize advanced information processing techniques, such as summarization and information extraction. In this paper, to extract core information, we automatically extracted the terminologies and their definition based on definitional sentences patterns and the structure of technical documents. Based on this, we proposed the system to build a specialized terminology dictionary. And further we suggested the personalized services so that users can utilize the terminology dictionary in various ways as an knowledge memory. The results of this study will allow users to find up-to-date information faster and easier. In addition, providing a personalized terminology dictionary to users can maximize the value, usability, and retrieval efficiency of the dictionary.

Cloud storage-based intelligent archiving system applying automatic document summarization (문서 자동요약 기술을 적용한 클라우드 스토리지 기반 지능적 아카이빙 시스템)

  • Yoo, Kee-Dong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.3
    • /
    • pp.59-68
    • /
    • 2012
  • Zero client-based cloud storage technology is gaining much interest as a tool to centralized management of organizational documents nowadays. Besides the well-known cloud storage's defects such as security and privacy protection, users of the zero client-based cloud storage point out the difficulty in browsing and selecting the storage category because of its diversity and complexity. To resolve this problem, this study proposes a method of intelligent document archiving by applying an algorithm-based automatic topic identification technology. Without user's direct definition of category to store the working document, the proposed methodology and prototype enable the working documents to be automatically archived into the predefined categories according to the extracted topic. Based on the proposed ideas, more effective and efficient centralized management of electronic documents can be achieved.

Automatic Product Feature Extraction for Efficient Analysis of Product Reviews Using Term Statistics (효율적인 상품평 분석을 위한 어휘 통계 정보 기반 평가 항목 추출 시스템)

  • Lee, Woo-Chul;Lee, Hyun-Ah;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.497-502
    • /
    • 2009
  • In this paper, we introduce an automatic product feature extracting system that improves the efficiency of product review analysis. Our system consists of 2 parts: a review collection and correction part and a product feature extraction part. The former part collects reviews from internet shopping malls and revises spoken style or ungrammatical sentences. In the latter part, product features that mean items that can be used as evaluation criteria like 'size' and 'style' for a skirt are automatically extracted by utilizing term statistics in reviews and web documents on the Internet. We choose nouns in reviews as candidates for product features, and calculate degree of association between candidate nouns and products by combining inner association degree and outer association degree. Inner association degree is calculated from noun frequency in reviews and outer association degree is calculated from co-occurrence frequency of a candidate noun and a product name in web documents. In evaluation results, our extraction method showed an average recall of 90%, which is better than the results of previous approaches.