• Title/Summary/Keyword: Automatic Steering System

Search Result 86, Processing Time 0.022 seconds

Development of Outboard Type Contactless Rudder Sensor and Automatic Steering System (선외기 선박용 비접촉 러더센서 및 자동조향장치 개발)

  • Kim, Ho-Young;Bang, Junho;Kim, Tae-Hyung;Ryu, In-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1285-1290
    • /
    • 2017
  • In this paper, we developed a core module of the steering system to control and operate the outboard ship with the automatic steering system, and implemented it as a complete integrated system. In particular, this paper presents the problem of the rudder sensor used in the existing system and implements the contactless rudder sensor as an improvement. In the case of existing rudder sensors, there is a problem that safety operation and economic loss of the ship operation is caused by malfunction due to immersion during use in outboard vessels. However, the proposed rudder sensor is separated from the rotary shaft to constitute a contactless type, and a circular magnet is fixed so that the rotating value can be detected and used by the Hall sensor to completely solve the flooding problem. As a result of the characteristic test, the voltage value from 1.8V to 3.2V was obtained between $-35^{\circ}$ and $+35^{\circ}$ degrees and satisfied the reference value. The proposed rudder sensor was mounted on the outboard ship, and all the performance of controller system were checked. According to the system proposed in this paper, it satisfies the Korean Standard Specification, which defines the speed of convergence in 30 seconds by switching from left to right in 7 seconds. We also confirmed that automatic steering was performed by comparing the compass sensor with the destination in the integrated controller at the start-up.

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

A Study on the Evaluation of Automatic Steering System of Ships in Folowing Seas (추사파중을 항행하는 선박의 자동조타 시스템 평가에 관한 연구)

  • 이경우;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.407-415
    • /
    • 2001
  • In the present study, irregular disturbances to ship dynamics is proposed, where irregular disturbances implying irregular wave and the fluctuating component of wind for the evaluation of automatic steering system of ship in following seas. Prediction method based on the principle of linear superposition. Irregular wave disturbances in following seas is calculated by frequency variation method. The mathematical model of each element of an automatic steering system is derived, which takes account of a few non-linear mechanisms. PD(Proportional-Derivative) controller and low-pass filter with a weather adjustment are adopted to modelling the characteristics of an autopilot. Performance index is introduced from the viewpoint of energy saving, which derived from the concept of energy loss on ship propulsion. Finally, the present methods are applied to two typical types of ship ; an ore carrier and a fishing boat. The various effects of control constants of autopilot on propulsive energy loss are investigated

  • PDF

Study on Traveling Characteristics of Straight Automatic Steering Devices for Drivable Agricultural Machinery (승용형 농기계용 직진 자동조향장치 주행특성 연구)

  • Won, Jin-ho;Jeon, Jintack;Hong, Youngki;Yang, Changju;Kim, Kyoung-chul;Kwon, Kyung-do;Kim, Gookhwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2022
  • This paper introduces an automatic steering system for straight traveling capable of being mounted on drivable agricultural machinery which user can handle it such as a tractor, a transplant, etc. The modular automatic steering device proposed in the paper is composed of RTK GNSS, IMU, HMI, hydraulic valve, and wheel sensor. The path generation method of the automatic steering system is obtained from two location information(latitude and longitude on each point) measured by GNSS in advance. From HMI, a straight path(AB line) can be created by connecting latitude and longitude on each point and the device makes the machine able to follow the path. During traveling along the reference path, it acquires the real time position data every sample time(0.1s), compares the reference with them and calculates the lateral deviation. The values of deviation are used to control the steering angle of the machine using hydraulic valve mounted on the axle of front wheel. In this paper, Pure Pursuit algorithm is applied used in autonomous vehicles frequently. For the analysis of traveling characteristics, field tests were executed about these conditions: velocity of 2, 3, 4km/h which is applied to general agricultural work and ground surface of solid(asphalt) and weak condition(soil) such as farmland. In the case of weak ground state, two experiments were executed about no-load(without work) and load(with work such as plowing). The maximum average deviations were presented 2.44cm, 7.32cm, and 11.34cm during traveling on three ground conditions : asphalt, soil without load and with load(plowing).

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

Study on the Automatic Steering Control of a Model Car using Visual Servoing (시각 서보에 의한 모델 자동차의 자율 조향제어)

  • 정상호;이종원;최용제
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.162-171
    • /
    • 1999
  • The most important part in automated transport systems is steering control for lane keeping Most of systems developed so far have used the visual information for steering control. In this study, the steering control algorithm based on visual servoing has been developed and tested by applying it on Radio Controlled(R/C) model car equipped with one CCD camera. We also demonstrated the feasibility of using it as a pre-test car before the real car experiment in developing automated vehicles. In order to solve the problem of the limited spave and load of a model car, remote-brained approach has been taken. For steering control of a model car, the PD controller which uses the look ahead offset to generate control input has been implemented and the characteristics of the controller has been explained in view of kinematics. Some experimental results have been also illustrated so as to show the control performance and stability.

  • PDF

A study on the Improvement of control performance of Auto Steering System (자동조타기의 제어성능개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.114-117
    • /
    • 2005
  • Auto Steering System is the device for course keeping or course altering to ship's steering system. The Purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modern control theories are being used widely in analyzing and designing the ship system. Though P.D type auto pilots are widely used in ships, the stability and the adjusting methods are not clarified. In this paper the authors proposed auto steering system with Fuzzy Logic Controller. In the fuzzy control the things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investigated through the computer simulation results. it was found that the fuzzy logic control was more efficient than the conventional system.

  • PDF

Auto steering control of ship (선박의 자동조타제어)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.209-211
    • /
    • 2006
  • Auto Steering System is the device for course keeping or course altering to ship's steering system. The purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modern control theories are being used widely in analyzing and designing the ship system. Though P.D type auto pilots are widely used in ships, the stability and the adjusting methods are not clarified. In this paper the authors proposed auto steering system with Hybrid Controller. The things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investigated through the computer simulation results. it was found that the Hybrid control was more efficient than the PD control system.

  • PDF

Automatic Guidance System for Tractor based upon Position-measurement Systems (위치(位置) 측정장치(測定裝置)를 이용한 트랙터의 자동(自動) 주행장치(走行裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 1990
  • An automatic guidance system based upon two position-measurement systems was designed to record where the tractor traveled and to guide the tractor along the predetermined path. An algorithm, using the kinematic behavior of tractor movement, was developed to determine the steering angle to reduce lateral position error. The algorithm was based upon constant travel speed, constant steering rate, and zero slip angles of the tractor wheels. The algorithm was evaluated through use of computer simulation and verified in field experiments. Results showed that the distance interval between position measurements was an important factor in guidance system performance. The position-measurement error of the guidance system must be less than 5 cm to be acceptably precise for field operations. An algorithm based upon a variable steering rate might improve the stability of the guidance system. More accurate measurement of tractor position and yaw angle, and faster error processing are required to improve the field performance of the guidance system.

  • PDF

Development of Automatic Steering System using Image Processing Technique (영상처리기법을 이용한 자율주행시스템 개발)

  • Cho, Chi-Woon;Park, Sung-Won
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.69-77
    • /
    • 1997
  • Material handling equipment such as container cranes and transtainer cranes have made larger and faster to improve the efficiency of container handling. As conditions of use in container terminal have become severe, and also the automation level required has become higher. For the high level automation for transtainer crane, the following characteristics have to be developed 1) Container Terminal Operation & Planning System with high efficiency. 2)Autosteering System of transtainer crane with precise position sensing system using image processing and feedback control system. 3)Automatic Position Identification System with transponder. We have developed an AGSS(Automatic Gantry Steering System) of transtainer crane with image processing technology preferentially. In this paper, the system will be introduced.

  • PDF