• 제목/요약/키워드: Automatic Speech Analysis

검색결과 74건 처리시간 0.02초

초음파 도플러를 이용한 음성 인식 (Automatic speech recognition using acoustic doppler signal)

  • 이기승
    • 한국음향학회지
    • /
    • 제35권1호
    • /
    • pp.74-82
    • /
    • 2016
  • 본 논문에서는 음성 신호 대신 초음파 도플러 신호를 이용하여 음성을 인식하는 새로운 음성 인식 방법을 제안하였다. 제안된 방법은 주변 잡음에 대한 강인성과 무 접촉식 센서 사용에 따른 사용자의 불편함 감소를 포함하는 기존의 음성/무음성 인식 방법에 비해 몇 가지 장점을 갖는다. 제안된 방법에서는 40 kHz의 주파수를 갖는 초음파 신호를 입 주변에 방사하여, 반사된 신호를 취득하고, 취득된 신호의 도플러 주파수 변화를 이용하여 음성 인식을 구현하였다. 단일 채널 초음파 신호를 사용하는 기존의 연구와 달리, 다양한 위치에서의 취득된 초음파 신호를 음성 인식에 사용하기 위해 다채널 취득 장치를 고안하였다. PCA(Principal Component Analysis)특징 변수를 사용한 음성 인식에는 좌-우 모델을 갖는 은닉 마코프 모델을 사용하였다. 제안된 방법의 검증을 위해 60개의 한국어 고립어에 대해 6명의 화자로부터 취득된 초음파 도플러 신호를 인식에 사용하였으며, 기존 음성기반 음성인식 기법과 비교할 만한 수준의 인식율을 얻을 수 있었다. 또한 실험 결과 제안된 방법은 기존의 단일 채널 음성 인식 방법과 비교하여 우수한 성능을 나타내었으며, 특히 잡음 환경에서도 90 % 이상의 인식율을 얻을 수 있었다.

한국인을 위한 영어 말하기 시험의 컴퓨터 기반 유창성 평가 (Computer-Based Fluency Evaluation of English Speaking Tests for Koreans)

  • 장병용;권오욱
    • 말소리와 음성과학
    • /
    • 제6권2호
    • /
    • pp.9-20
    • /
    • 2014
  • In this paper, we propose an automatic fluency evaluation algorithm for English speaking tests. In the proposed algorithm, acoustic features are extracted from an input spoken utterance and then fluency score is computed by using support vector regression (SVR). We estimate the parameters of feature modeling and SVR using the speech signals and the corresponding scores by human raters. From the correlation analysis results, it is shown that speech rate, articulation rate, and mean length of runs are best for fluency evaluation. Experimental results show that the correlation between the human score and the SVR score is 0.87 for 3 speaking tests, which suggests the possibility of the proposed algorithm as a secondary fluency evaluation tool.

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

중소형 선박을 위한 음성합성 기반 자동 안전항해 지원 서비스 제공 시스템 개발 (A Development of Automatic Safety Navigation Support Service Providing System for Medium and Small Ships based on Speech Synthesis)

  • 황훈규;김배성;우윤태
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.595-602
    • /
    • 2021
  • 우리나라의 경우, 중소형선박에 의한 해양사고의 발생 비중이 상대적으로 매우 높으며, 통계에 따르면 각종 안전지원 장비의 탑재 의무화에도 불구하고 크게 감소되지 않고 있는 실정이다. 본 논문에서는 대형선박에 비해 상대적으로 탑재 장비가 적은 중소형 선박을 위한 음성합성 기반 자동 안전항해 지원 서비스 제공 시스템의 아키텍처를 제안한다. 시스템의 주목적은 주변 선박들에게 VHF 무전기를 통해 합성된 음성 안전 메시지를 자동으로 제공하여 해양사고를 예방하는 것이다. 안전항해 지원 서비스는 GPS 및 AIS를 연계하여 음성 안전 지원 메시지를 합성하고, VHF를 통하여 자동으로 방송해주는 형태로 동작된다. 따라서 시스템을 구성하는 데이터 처리 모듈, 단계별 위험도 분석 모듈, 음성합성 안전 메시지 생성 모듈, VHF 방송장비 제어 모듈 등을 개발하였다. 또한, 개발한 시스템을 활용하여 실험실 수준의 테스트와 해상 실증 시험을 진행하였으며, 이를 통해 서비스 유용성을 검증하였다.

식도음성의 고유기저주파수 발현 현상 (Intrinsic Fundamental Frequency(Fo) of Vowels in the Esophageal Speech)

  • 홍기환;김성완;김현기
    • 대한후두음성언어의학회지
    • /
    • 제9권2호
    • /
    • pp.142-146
    • /
    • 1998
  • Background : It has been established that the fundamental frequency(Fo) of the vowels varies systemically as a function of vowel height. Specifically, high vowels have a higher Fo than low vowels. Two major explanations or hypotheses dominate contemporary accounts of fired to explain the mechanisms underlying intrinsic variation in vowel Fo, source-tract coupling hypothesis and tongue-pull hypothesis. Objectives : Total laryngectomy surgery necessiates removal of all structures between the hyoid bone and the tracheal rings. Therefore, the assumption that no direct interconnection exists between the tongue and pharyngoesophageal segment that would mediate systematic variation in vowel Fo appears quite reasonable. If tongue-pull hypothesis is correct, systemic differences in Fo between high versus low vowels produced by esophageal speakers would not Or expected. We analyzed the Fo in the vowels of esophageal voice. Materials and method : The subjects were 11 cases of laryngectomee patients with fluent esophageal voice. The five essential vowels were recorded and analyzed with computer speech analysis system(Computerized Speech Lab). The Fo was measured using acoustic waveform, automatically and manually, and narrow band spectral analysis. Results : The results of this study reveal that intrinsic variation in vowel Fo is clearly evident in esophageal speech. By analysis using acoustic waveform automatically, the signals were too irregular to measure the Fo precisely. So the data from automatic analysis of acoustic waveform is not logical. But the Fo by measuring with manually calculated acoustic waveform or narrowband spectral analysis resulted in acceptable results. These results were interpreted to support neither the source-tract coupling nor the tongue-pull hypotheses and led us to offer an alternative explanation to account for intrinsic variation of Fo.

  • PDF

음성신호를 이용한 감정인식 (An Emotion Recognition Technique using Speech Signals)

  • 정병욱;천성표;김연태;김성신
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.494-500
    • /
    • 2008
  • 휴먼인터페이스 기술의 발달에서 인간과 기계의 상호작용은 중요한 부분이다. 감정인식에 대한 연구는 이러한 상호작용에 도움을 준다. 본 연구는 개인화된 음성신호에 대하여 감정인식 알고리즘을 제안하였다. 감정인식을 위하여 PLP 분석을 이용하여 음성신호의 특징으로 사용하였다. 처음에 PLP 분석은 음성인식에서 음성신호의 화자 종속적인 성분을 제거하기 위하여 사용되었으나 이후 화자인식을 위한 연구에서 PLP 분석이 화자의 특징 추출을 위해 효과적임을 설명하고 있다. 그래서 본 논문은 PLP 분석으로 만들어진 개인화된 감정 패턴을 이용하여 쉽게 실시간으로 음성신호로부터 감정을 평가하는 알고리즘을 제안하였다. 그 결과 최대 90%이상의 인식률과 평균 75%의 인식률을 보였다. 이 시스템은 간단하지만 효율적이다.

SMS 변형된 문자열의 자동 오류 교정 시스템 (Automatic Error Correction System for Erroneous SMS Strings)

  • 강승식;장두성
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권6호
    • /
    • pp.386-391
    • /
    • 2008
  • 휴대폰과 메신저 등 통신 환경에서 문자 메시지를 전송할 때 표준어가 아닌 왜곡된 어휘들을 사용하고 있으며, 이러한 변형된 어휘들은 음성 인식, 음성 합성, 문서 정보 추출 등 언어처리 및 관련 분야의 응용 시스템에서 많은 문제점을 유발시킨다. 본 논문에서는SMS 문장들의 변형 및 띄어쓰기 오류를 자동으로 교정하여 형태소 분석 및 품사 태깅의 성능 저하 문제를 방지하는 문자열 오류의 교정 방법을 제안하고 시스템을 구현하였다. 시스템의 성능에 가장 큰 영향을 미치는 변형된 문자열 사전을 구축하는 방법으로 (1) 통신 어휘집을 기반으로 수동으로 구축하는 방법, (2) 수작업으로 구축된 말뭉치로부터 자동으로 변형된 문자열을 추출하는 방법, (3) 자동으로 변형된 문자열을 추출할 때 좌우 문맥을 고려하는 방법에 대하여 시스템을 구현하고 실험을 통하여 비교-분석 및 성능 평가 결과를 제시하였다.

실시간 윈도우 환경에서 DMS모델을 이용한 자동 음성 제어 시스템에 관한 연구 (A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment)

  • 이정기;남동선;양진우;김순협
    • 한국음향학회지
    • /
    • 제19권3호
    • /
    • pp.51-56
    • /
    • 2000
  • 본 논문은 음성인식을 이용한 실시간 윈도우 자동 제어 시스템에 관한 연구이다. 사용된 음성 모델은 수행 속도를 높이기 위해 제안된 가변 DMS 모델을 이용하였으며, 인식 알고리즘으로 이를 이용한 One-Stage DP 알고리즘을 사용한다. 인식 대상단어는 윈도우에서 자주 사용되는 66개의 윈도우 제어 명령어들로 구성한다. 본 연구에서 온라인으로 음성을 처리하기 위해 음성 검출 알고리즘을 구현하였으며, 기존 DMS(Dynamic Multi Section)모델 생성시 고정적으로 적용하던 섹션의 수를 입력 신호의 지속 시간을 고려하여 가변적으로 적용한 가변 DMS 모델을 제안하였다. 또한 윈도우에서 사용자 작업에 의해 현재 상태에 인식 대상으로 불필요한 인식 대상단어가 발생하게 되는데 이를 효율적으로 처리하기 위해 사용 모델을 재구성하여 사용하도록 제안하였으며, 인간의 청각적 특성을 고려하여 음성신호에서 개인의 특성은 제외하고 음성 자체의 특징만을 추출하여 특징 벡터를 생성하는 인지 선형 예측(Perceptual Linear Predictive)분석 방법을 이용하였다. 시스템 성능 평가 결과 가변 동적 다중 섹션 모델(Variable DMS model)과 기존의 DMS 모델은 인식률 면에서는 거의 동일하지만 인식 수행 속도는 제안된 모델의 계산량이 기존 모델보다 작기 때문에 향상되었고, 다중 화자 독립 인식률은 99.08%, 다중 화자 종속 인식률은 99.39%의 인식률을 나타내었으며, 실제 노이즈가 있는 환경에서 화자독립실험의 경우 96.25%의 인식률을 보여 주었다.

  • PDF

결합정보를 이용한 명사 및 접사 추출 (Noun and affix extraction using conjunctive information)

  • 서창덕;박인칠
    • 전자공학회논문지C
    • /
    • 제34C권5호
    • /
    • pp.71-81
    • /
    • 1997
  • This paper proposes noun and affix extraction methods using conjunctive information for making an automatic indexing system thorugh morphological analysis and syntactic analysis. The korean language has a peculiar spacing words rule, which is different from other languages, and the conjunctive information, which is extracted from the rule, can reduce the number of multiple parts of speech at a minimum cost. The proposed algorithms also solve the problem that one word is seperated by newline charcter. We show efficiency of the proposed algorithms through the process of morhologica analyzing.

  • PDF

Automatic Vowel Sequence Reproduction for a Talking Robot Based on PARCOR Coefficient Template Matching

  • Vo, Nhu Thanh;Sawada, Hideyuki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권3호
    • /
    • pp.215-221
    • /
    • 2016
  • This paper describes an automatic vowel sequence reproduction system for a talking robot built to reproduce the human voice based on the working behavior of the human articulatory system. A sound analysis system is developed to record a sentence spoken by a human (mainly vowel sequences in the Japanese language) and to then analyze that sentence to give the correct command packet so the talking robot can repeat it. An algorithm based on a short-time energy method is developed to separate and count sound phonemes. A matching template using partial correlation coefficients (PARCOR) is applied to detect a voice in the talking robot's database similar to the spoken voice. Combining the sound separation and counting the result with the detection of vowels in human speech, the talking robot can reproduce a vowel sequence similar to the one spoken by the human. Two tests to verify the working behavior of the robot are performed. The results of the tests indicate that the robot can repeat a sequence of vowels spoken by a human with an average success rate of more than 60%.