본 논문에서는 음성 신호 대신 초음파 도플러 신호를 이용하여 음성을 인식하는 새로운 음성 인식 방법을 제안하였다. 제안된 방법은 주변 잡음에 대한 강인성과 무 접촉식 센서 사용에 따른 사용자의 불편함 감소를 포함하는 기존의 음성/무음성 인식 방법에 비해 몇 가지 장점을 갖는다. 제안된 방법에서는 40 kHz의 주파수를 갖는 초음파 신호를 입 주변에 방사하여, 반사된 신호를 취득하고, 취득된 신호의 도플러 주파수 변화를 이용하여 음성 인식을 구현하였다. 단일 채널 초음파 신호를 사용하는 기존의 연구와 달리, 다양한 위치에서의 취득된 초음파 신호를 음성 인식에 사용하기 위해 다채널 취득 장치를 고안하였다. PCA(Principal Component Analysis)특징 변수를 사용한 음성 인식에는 좌-우 모델을 갖는 은닉 마코프 모델을 사용하였다. 제안된 방법의 검증을 위해 60개의 한국어 고립어에 대해 6명의 화자로부터 취득된 초음파 도플러 신호를 인식에 사용하였으며, 기존 음성기반 음성인식 기법과 비교할 만한 수준의 인식율을 얻을 수 있었다. 또한 실험 결과 제안된 방법은 기존의 단일 채널 음성 인식 방법과 비교하여 우수한 성능을 나타내었으며, 특히 잡음 환경에서도 90 % 이상의 인식율을 얻을 수 있었다.
In this paper, we propose an automatic fluency evaluation algorithm for English speaking tests. In the proposed algorithm, acoustic features are extracted from an input spoken utterance and then fluency score is computed by using support vector regression (SVR). We estimate the parameters of feature modeling and SVR using the speech signals and the corresponding scores by human raters. From the correlation analysis results, it is shown that speech rate, articulation rate, and mean length of runs are best for fluency evaluation. Experimental results show that the correlation between the human score and the SVR score is 0.87 for 3 speaking tests, which suggests the possibility of the proposed algorithm as a secondary fluency evaluation tool.
Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.
우리나라의 경우, 중소형선박에 의한 해양사고의 발생 비중이 상대적으로 매우 높으며, 통계에 따르면 각종 안전지원 장비의 탑재 의무화에도 불구하고 크게 감소되지 않고 있는 실정이다. 본 논문에서는 대형선박에 비해 상대적으로 탑재 장비가 적은 중소형 선박을 위한 음성합성 기반 자동 안전항해 지원 서비스 제공 시스템의 아키텍처를 제안한다. 시스템의 주목적은 주변 선박들에게 VHF 무전기를 통해 합성된 음성 안전 메시지를 자동으로 제공하여 해양사고를 예방하는 것이다. 안전항해 지원 서비스는 GPS 및 AIS를 연계하여 음성 안전 지원 메시지를 합성하고, VHF를 통하여 자동으로 방송해주는 형태로 동작된다. 따라서 시스템을 구성하는 데이터 처리 모듈, 단계별 위험도 분석 모듈, 음성합성 안전 메시지 생성 모듈, VHF 방송장비 제어 모듈 등을 개발하였다. 또한, 개발한 시스템을 활용하여 실험실 수준의 테스트와 해상 실증 시험을 진행하였으며, 이를 통해 서비스 유용성을 검증하였다.
Background : It has been established that the fundamental frequency(Fo) of the vowels varies systemically as a function of vowel height. Specifically, high vowels have a higher Fo than low vowels. Two major explanations or hypotheses dominate contemporary accounts of fired to explain the mechanisms underlying intrinsic variation in vowel Fo, source-tract coupling hypothesis and tongue-pull hypothesis. Objectives : Total laryngectomy surgery necessiates removal of all structures between the hyoid bone and the tracheal rings. Therefore, the assumption that no direct interconnection exists between the tongue and pharyngoesophageal segment that would mediate systematic variation in vowel Fo appears quite reasonable. If tongue-pull hypothesis is correct, systemic differences in Fo between high versus low vowels produced by esophageal speakers would not Or expected. We analyzed the Fo in the vowels of esophageal voice. Materials and method : The subjects were 11 cases of laryngectomee patients with fluent esophageal voice. The five essential vowels were recorded and analyzed with computer speech analysis system(Computerized Speech Lab). The Fo was measured using acoustic waveform, automatically and manually, and narrow band spectral analysis. Results : The results of this study reveal that intrinsic variation in vowel Fo is clearly evident in esophageal speech. By analysis using acoustic waveform automatically, the signals were too irregular to measure the Fo precisely. So the data from automatic analysis of acoustic waveform is not logical. But the Fo by measuring with manually calculated acoustic waveform or narrowband spectral analysis resulted in acceptable results. These results were interpreted to support neither the source-tract coupling nor the tongue-pull hypotheses and led us to offer an alternative explanation to account for intrinsic variation of Fo.
휴먼인터페이스 기술의 발달에서 인간과 기계의 상호작용은 중요한 부분이다. 감정인식에 대한 연구는 이러한 상호작용에 도움을 준다. 본 연구는 개인화된 음성신호에 대하여 감정인식 알고리즘을 제안하였다. 감정인식을 위하여 PLP 분석을 이용하여 음성신호의 특징으로 사용하였다. 처음에 PLP 분석은 음성인식에서 음성신호의 화자 종속적인 성분을 제거하기 위하여 사용되었으나 이후 화자인식을 위한 연구에서 PLP 분석이 화자의 특징 추출을 위해 효과적임을 설명하고 있다. 그래서 본 논문은 PLP 분석으로 만들어진 개인화된 감정 패턴을 이용하여 쉽게 실시간으로 음성신호로부터 감정을 평가하는 알고리즘을 제안하였다. 그 결과 최대 90%이상의 인식률과 평균 75%의 인식률을 보였다. 이 시스템은 간단하지만 효율적이다.
휴대폰과 메신저 등 통신 환경에서 문자 메시지를 전송할 때 표준어가 아닌 왜곡된 어휘들을 사용하고 있으며, 이러한 변형된 어휘들은 음성 인식, 음성 합성, 문서 정보 추출 등 언어처리 및 관련 분야의 응용 시스템에서 많은 문제점을 유발시킨다. 본 논문에서는SMS 문장들의 변형 및 띄어쓰기 오류를 자동으로 교정하여 형태소 분석 및 품사 태깅의 성능 저하 문제를 방지하는 문자열 오류의 교정 방법을 제안하고 시스템을 구현하였다. 시스템의 성능에 가장 큰 영향을 미치는 변형된 문자열 사전을 구축하는 방법으로 (1) 통신 어휘집을 기반으로 수동으로 구축하는 방법, (2) 수작업으로 구축된 말뭉치로부터 자동으로 변형된 문자열을 추출하는 방법, (3) 자동으로 변형된 문자열을 추출할 때 좌우 문맥을 고려하는 방법에 대하여 시스템을 구현하고 실험을 통하여 비교-분석 및 성능 평가 결과를 제시하였다.
본 논문은 음성인식을 이용한 실시간 윈도우 자동 제어 시스템에 관한 연구이다. 사용된 음성 모델은 수행 속도를 높이기 위해 제안된 가변 DMS 모델을 이용하였으며, 인식 알고리즘으로 이를 이용한 One-Stage DP 알고리즘을 사용한다. 인식 대상단어는 윈도우에서 자주 사용되는 66개의 윈도우 제어 명령어들로 구성한다. 본 연구에서 온라인으로 음성을 처리하기 위해 음성 검출 알고리즘을 구현하였으며, 기존 DMS(Dynamic Multi Section)모델 생성시 고정적으로 적용하던 섹션의 수를 입력 신호의 지속 시간을 고려하여 가변적으로 적용한 가변 DMS 모델을 제안하였다. 또한 윈도우에서 사용자 작업에 의해 현재 상태에 인식 대상으로 불필요한 인식 대상단어가 발생하게 되는데 이를 효율적으로 처리하기 위해 사용 모델을 재구성하여 사용하도록 제안하였으며, 인간의 청각적 특성을 고려하여 음성신호에서 개인의 특성은 제외하고 음성 자체의 특징만을 추출하여 특징 벡터를 생성하는 인지 선형 예측(Perceptual Linear Predictive)분석 방법을 이용하였다. 시스템 성능 평가 결과 가변 동적 다중 섹션 모델(Variable DMS model)과 기존의 DMS 모델은 인식률 면에서는 거의 동일하지만 인식 수행 속도는 제안된 모델의 계산량이 기존 모델보다 작기 때문에 향상되었고, 다중 화자 독립 인식률은 99.08%, 다중 화자 종속 인식률은 99.39%의 인식률을 나타내었으며, 실제 노이즈가 있는 환경에서 화자독립실험의 경우 96.25%의 인식률을 보여 주었다.
This paper proposes noun and affix extraction methods using conjunctive information for making an automatic indexing system thorugh morphological analysis and syntactic analysis. The korean language has a peculiar spacing words rule, which is different from other languages, and the conjunctive information, which is extracted from the rule, can reduce the number of multiple parts of speech at a minimum cost. The proposed algorithms also solve the problem that one word is seperated by newline charcter. We show efficiency of the proposed algorithms through the process of morhologica analyzing.
IEIE Transactions on Smart Processing and Computing
/
제5권3호
/
pp.215-221
/
2016
This paper describes an automatic vowel sequence reproduction system for a talking robot built to reproduce the human voice based on the working behavior of the human articulatory system. A sound analysis system is developed to record a sentence spoken by a human (mainly vowel sequences in the Japanese language) and to then analyze that sentence to give the correct command packet so the talking robot can repeat it. An algorithm based on a short-time energy method is developed to separate and count sound phonemes. A matching template using partial correlation coefficients (PARCOR) is applied to detect a voice in the talking robot's database similar to the spoken voice. Combining the sound separation and counting the result with the detection of vowels in human speech, the talking robot can reproduce a vowel sequence similar to the one spoken by the human. Two tests to verify the working behavior of the robot are performed. The results of the tests indicate that the robot can repeat a sequence of vowels spoken by a human with an average success rate of more than 60%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.