• 제목/요약/키워드: Automatic Mesh Generation Method

검색결과 95건 처리시간 0.026초

Numerical simulation of the crack propagation behavior in 3D elastic body

  • Taniguchi, Takeo;Miyaji, Akihiko;Suetsugu, Takeshi;Matsunaga, Shohgo
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.227-244
    • /
    • 1994
  • The purpose of this investigation is to propose a numerical simulation method of the crack propagation behavior in 3-dimensionl elastic body. The simulation method is based on the displacement-type finite element method, and the linear fracture theory is introduced. The results from the proposed method are compared with those from the structural experiments, and the good coincidences between them are shown in this paper. At the same time, 2-dimensional analysis is also done, and the results are compared with those obtained from 3-dimensional analysis and the structural experiments.

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

An adaptive control of spatial-temporal discretization error in finite element analysis of dynamic problems

  • Choi, Chang-Koon;Chung, Heung-Jin
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.391-410
    • /
    • 1995
  • The application of adaptive finite element method to dynamic problems is investigated. Both the kinetic and strain energy errors induced by space and time discretization were estimated in a consistent manner and controlled by the simultaneous use of the adaptive mesh generation and the automatic time stepping. Also an optimal ratio of spatial discretization error to temporal discretization error was discussed. In this study it was found that the best performance can be obtained when the specified spatial and temporal discretization errors have the same value. Numerical examples are carried out to verify the performance of the procedure.

초고압 지중 OF 케이블 접속재의 전계해석에 관한 연구 (A Study on the Electric Field Analysis of Extra-High Voltage Oil-Filled Cable Accessories)

  • 이종범;강동식;강도현;이수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.432-435
    • /
    • 1989
  • This paper presents an algorithm for electric field analysis which is essential to insulation design of extra-high voltage oil-filled cable accessories using finite element method. Governing equation is induced by electromagnetic equation. Variational method is adopted for FEN formulation. Automatic mesh generation which saves time and labor is introduced for the input data. The application results of proposed algorithms were used for insulation design to develop 345kV cable joint.

  • PDF

유한요소법에 의한 초고압 OF 케이블 접속재의 주도해석에 관한 연구 (Study on the Thermal Analysis of Extra-High Voltage OF Cable Accessories using Finite Element Method)

  • 이종범;강동식;강도현;이수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.211-215
    • /
    • 1989
  • This paper presents the thermal analysis of EHV OF cable accessories using FEM. The governing equation about the temperature in the cable accessories is induced by the energy balance equation. Since the temperature distribution is a function of space and time, the weighted residual method is adopted for FEM formulation. The difference approximation is used to treat the time differential term in the element equation. Automatic mesh generation which save time and labor is introduced for the data input process. It will be expected that the following thermal analysis result will be very useful to cable accessories design.

  • PDF

Delaunay 삼각화에 의한 유한요소 자동 생성 코드 개발에 관한 연구 (Code Development of Automatic Mesh Generation for Finite Element Method Using Delaunay Triangulation Method)

  • 박병호;사종엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.111-117
    • /
    • 1996
  • The Delaunay triangulation technique was tested for complicated shapes of computational domain. While a simple geometry, both in topology and in geometry, was discretized well into triangular elements. a complex geometry often failed in triangularization. A complex geometry should be devided into smaller sub-domains whose shape is simple both topologically and geometrically. The present study developed the data structures not only for relationships among neibering elements but also for shape information, and coupled these into the Delaunay triangulation technique. This approach was able to enhance greatly the reliability of triangularization specially in complicated shapes of computational domains. The GUI (Graphic User Interface) and OOP (Object-Oriented Programming) were used in order to develop the user-friendly and efficient computer code.

  • PDF

퍼지메쉬를 이용한 3차원 균열에 대한 응력확대계수 해석 시스템 (Stress Intensity Factor Analysis System for 3D Cracks Using Fuzzy Mesh)

  • 이준성;이은철;최윤종;이양창
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.122-126
    • /
    • 2008
  • 상용화된 FEM 코드와 3차원 솔리드 모델러를 통합하여 3차원 균열에 대한 자동 응력확대계수 해석 시스템을 개발하였다. 하나 또는 몇 개의 3차원 균열을 포함하는 기하학적 모델을 정의한다. 시스템에 저장된 몇 개의 절점패턴을 선택하면 자동적으로 퍼지지식 처리기법을 이용한 기하학적 모델 전 영역에 절점들이 중첩되어진다. 절점들은 생성되어지고 데로우니삼각화 법에 의한 사면체 솔리드요소가 생성되어진다. 최종적으로 완전한 유한요소 모델이 생성되어져 응력해석을 수행하게 된다. 본 논문은 몇몇 함수들을 실현시키기 위한 방법론에 대해 묘사하고 있으며 시스템의 타당성을 제시하였다.

3차원 균열에 대한 자동화된 응력확대계수해석 시스템 개발 (Develpment of Automated Stress Intensity Factor Analysis System for Three-Dimensional Cracks)

  • 이준성
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.64-73
    • /
    • 1997
  • 솔리드 모델러, 자동요소분할 기법, 4면체 특이요소, 응력확대계수의 해석 기능을 통합하여, 3차원 균열의 응력확대계수를 효율적으로 해석할 수 있는 시스템을 개발하였다. 균열을 포함하는 기하모델을 CAD 시스템을 이용하여 정의하고, 경계조건과 재료 물성치 및 절점밀도 분포를 기하모델에 직접 지정함으로써, 퍼지이론 에 의한 절점발생과 데로우니 삼각화법에 의한 요소가 자동으로 생성된다. 특히, 균열 근방에는 4면체 2차 특이요소를 생성시켰으며, 유한요소 해석을 위한 입력 데이터가 자동으로 작성되어 해석코드에 의한 응력 해석이 수행된다. 해석 후, 출력되는 변위를 이용하여 변위외삽법에 의한 응력확대계수가 자동적으로 계산되어 진다. 본 시스템의 효용성을 확인하기 위해, 인장력을 받는 평판내의 표면균열에 대해 해석하여 보았다.

  • PDF

ALE 기반의 고체 로켓 내부 유체-구조 연계 해석 (ALE-Based FSI Simulation of Solid Propellant Rocket Interior)

  • 한상호;최희성;민대호;김종암;황찬규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

주철 FC200을 이용한 하중점에 따른 동적파괴경로 예측 연구 (Study on Dynamic Fracture Path Prediction According to Load Point using Cast Iron FC200)

  • 유직수;조규춘
    • 한국산업융합학회 논문집
    • /
    • 제27권4_2호
    • /
    • pp.973-980
    • /
    • 2024
  • Dependence of dynamic fracture path on loading velocity was observed from experimental results based on the three point bending fracture in cast iron. In this study, 3D and 2D numerical simulations are used to evaluate singular stress fields near crack tip and fracture mechanics parameters. Moving finite element technique, 2D and 3D Delauney automatic mesh generation and contact-noncontact evaluation is introduced into the numerical method. Dynamic fracture thoughness is decreased with increase of impact loading velocity. Fracture mode-ratio corresponds to initial kink angle of fracture path. The numerical result shows that the maximum hoop stress criterion cannot be applied to dynamic fracture of cast iron.