• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.024 seconds

Rule Acquisition Using Ontology Based on Graph Search (그래프 탐색을 이용한 웹으로부터의 온톨로지 기반 규칙습득)

  • Park, Sangun;Lee, Jae Kyu;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.3
    • /
    • pp.95-110
    • /
    • 2006
  • To enhance the rule-based reasoning capability of Semantic Web, the XRML (eXtensible Rule Markup Language) approach embraces the meta-information necessary for the extraction of explicit rules from Web pages and its maintenance. To effectuate the automatic identification of rules from unstructured texts, this research develops a framework of using rule ontology. The ontology can be acquired from a similar site first, and then can be used for multiple sites in the same domain. The procedure of ontology-based rule identification is regarded as a graph search problem with incomplete nodes, and an A* algorithm is devised to solve the problem. The procedure is demonstrated with the domain of shipping rates and return policy comparison portal, which needs rule based reasoning capability to answer the customer's inquiries. An example ontology is created from Amazon.com, and is applied to the many online retailers in the same domain. The experimental result shows a high performance of this approach.

  • PDF

An Iris Detection Algorithm for Disease Prediction based Iridology (홍채학기반이 질병예측을 위한 홍채인식 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • Iris diagnosis is an alternative medicine to diagnose the disease of the patient by using different of the iris pattern, color and other characteristics. This paper proposed a disease prediction algorithm that using the iris regions that analyze iris change to using differential image of iris image. this method utilize as patient's health examination according to iris change. Because most of previous studies only find a sign pattern in a iris image, it's not enough to be used for a iris diagnosis system. We're developed an iris diagnosis system based on a iris images processing approach, It's presents the extraction algorithms of 8 major iris signs and correction manually for improving the accuracy of analysis. As a result, PNSR of applied edge detection image is about 132, and pattern matching area recognition presented practical use possibility by automatic diagnostic that presume situation of human body by iris about 91%.

Automatic Extract User Intention from Web Search Log (웹 정보 검색 이력을 이용한 사용자 의도 자동 추출)

  • Park, Kinam;Jung, Soonyoung;Suh, Taewon;Ji, Hyesung;Lee, Taemin;Lim, Heuiseok
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.6
    • /
    • pp.21-32
    • /
    • 2009
  • This paper proposes a method to extract a user's intention automatically and implementation of intention map that support a user can appropriate search results using a user' information need accurately. It selects user intention based on searching history obtained from previous users' same queries and extracts user intentions by using clustering algorithm and user intention extraction algorithm, extracted user intentions are represented in an intention map base on a theory of knowledge representation. For the efficiency analysis of intention map, we extracted user intentions using 2,600 search history data which provided by a current domestic commercial search engine. The experimental results using the information intention map search when using general search engines represent more than satisfaction was statistically significant.

  • PDF

Temporal Classification Method for Forecasting Power Load Patterns From AMR Data

  • Lee, Heon-Gyu;Shin, Jin-Ho;Park, Hong-Kyu;Kim, Young-Il;Lee, Bong-Jae;Ryu, Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2007
  • We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

Cost Effective Mobility Anchor Point Selection Scheme for F-HMIPv6 Networks (F-HMIPv6 환경에서의 비용 효율적인 MAP 선택 기법)

  • Roh Myoung-Hwa;Jeong Choong-Kyo
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.265-271
    • /
    • 2006
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps: preprocessing, classification, and matching, in the classification, we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Diagnosis parameters extraction by correlativity analysis of blood pressure(BP) and head blood pressure(HBP) and Development of multi-function automatic blood pressure monitor (상완혈압과 두부혈압의 상관성 분석에 의한 진단요소 추출과 다기능 전자혈압계의 개발)

  • 이용흠;고수복;정동명
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.58-67
    • /
    • 2003
  • Many adult diseases(cerebral apoplexy, athymiait, etc.) result from hypertension, blood circulation disturbance and increment of HBP. In early diagnosis of these diseases, MRI, X-ray and PET have been used rather aim for treatment than prevention of a disease. Since, cerebral apoplexy and athymiait have been caused to the regular/irregular persons, it is very important to measure HBP which has connection with cerebral blood low state. HBP has more diagnosis elements than that of BP. So, we can diagnose accurate hypertension by measuring of HBP. But, existing sphygmomanometers and automatic BP monitors can not measure HBF, and can not execute complex function(measuring of BP/HBP, blood flow improvement). The purpose of this paper is to develop the system and algorithm which can measure BP/HBP for accurate diagnosis. Also, we extracted diagnosis factors by the correlativity analysis of BP/HBP. The maximum pressure of HBP corresponds to 62% that of BP, the minimum pressure of HBP corresponds to 46% that of BP. Therefore, we developed the multi function automatic blood pressure monitor which can measure BP/HBP and improve cerebral blood flow state.

The Construction of GIS-based Flood Risk Area Layer Considering River Bight (하천 만곡부를 고려한 GIS 기반 침수지역 레이어 구축)

  • Lee, Geun-Sang;Yu, Byeong-Hyeok;Park, Jin-Hyeog;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Rapid visualization of flood area of downstream according to the dam effluent in flood season is very important in dam management works. Overlay zone of river bight should be removed to represent flood area efficiently based on flood stage which was modeled in river channels. This study applied drainage enforcement algorithm to visualize flood area considering river bight by coupling Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV). The drainage enforcement algorithm is a kind of interpolation which gives to advantage into hydrological process studies by removing spurious sinks of terrain in automatic drainage algorithm. This study presented mapping technique of flood area layer considering river bight in Namgang-Dam downstream, and developed system based on Arcobject component to execute this process automatically. Automatic extraction system of flood area layer could save time-consuming efficiently in flood inundation visualization work which was propelled based on large volume data. Also, flood area layer by coupling with IKONOS satellite image presented real information in flood disaster works.

  • PDF

Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm (퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Kim, Kwang-Baek;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1380-1386
    • /
    • 2007
  • This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is blacker white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm. Experiments using real images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.

Comparative Study of GDPA and Hough Transformation for Linear Feature Extraction using Space-borne Imagery (위성 영상정보를 이용한 선형 지형지물 추출에서의 GDPA와 Hough 변환 처리결과 비교연구)

  • Lee Kiwon;Ryu Hee-Young;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.261-274
    • /
    • 2004
  • The feature extraction using remotely sensed imagery has been recognized one of the important tasks in remote sensing applications. As the high-resolution imagery are widely used to the engineering purposes, need of more accurate feature information also is increasing. Especially, in case of the automatic extraction of linear feature such as road using mid or low-resolution imagery, several techniques was developed and applied in the mean time. But quantitatively comparative analysis of techniques and case studies for high-resolution imagery is rare. In this study, we implemented a computer program to perform and compare GDPA (Gradient Direction Profile Analysis) algorithm and Hough transformation. Also the results of applying two techniques to some images were compared with road centerline layers and boundary layers of digital map and presented. For quantitative comparison, the ranking method using commission error and omission error was used. As results, Hough transform had high accuracy over 20% on the average. As for execution speed, GDPA shows main advantage over Hough transform. But the accuracy was not remarkable difference between GDPA and Hough transform, when the noise removal was app]ied to the result of GDPA. In conclusion, it is expected that GDPA have more advantage than Hough transform in the application side.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.