• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.026 seconds

Program Development for Automatic Extraction and Transformation of Standard Metadata of Geo-spatial Data (공간정보 표준 메타데이터 추출 및 변환 프로그램 개발)

  • Han, Sun-Mook;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.549-559
    • /
    • 2010
  • In geo-spatial information system building and operation, metadata is one of the crucial factors. Therefore, international and domestic organizations or associations for standardization have developed and distributed geo-based standard metadata to meet public demands. However, because metadata is composed of complicated elements and needs XML storage and management, individual organization which implement and operate practical application system is inclined to define and use its own metadata specifications. In this study, metadata extraction program, that metadata elements are directly extracted from geo-based file formats was developed to easily utilize standard metadata such as ISO/TC 19115, TTAS.KO-10.0139 and TTAS.IS-19115, and those elements are processed into XML. Furthermore, geo-based images sets are applied to another metadata of ISO/TC 19115-2. As well, metadata transformation is needed due to inconsistent or non-corresponding definition among standard metadata; in this program, transformation modules are also implemented to interoperable uses between standard metadata specifications. Widely used data formats are dealt with in this program, but extension for other formats and other metadata specifications is possible, and it is expected that availability of standard metadata is increased, through this kind of development.

Indoor Scene Classification based on Color and Depth Images for Automated Reverberation Sound Editing (자동 잔향 편집을 위한 컬러 및 깊이 정보 기반 실내 장면 분류)

  • Jeong, Min-Heuk;Yu, Yong-Hyun;Park, Sung-Jun;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.384-390
    • /
    • 2020
  • The reverberation effect on the sound when producing movies or VR contents is a very important factor in the realism and liveliness. The reverberation time depending the space is recommended in a standard called RT60(Reverberation Time 60 dB). In this paper, we propose a scene recognition technique for automatic reverberation editing. To this end, we devised a classification model that independently trains color images and predicted depth images in the same model. Indoor scene classification is limited only by training color information because of the similarity of internal structure. Deep learning based depth information extraction technology is used to use spatial depth information. Based on RT60, 10 scene classes were constructed and model training and evaluation were conducted. Finally, the proposed SCR + DNet (Scene Classification for Reverb + Depth Net) classifier achieves higher performance than conventional CNN classifiers with 92.4% accuracy.

The Authentication System in Real-Time using Face Recognition and RFID (얼굴 인식과 RFID를 이용한 실시간 인증 시스템)

  • Jee, Jeong-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.263-272
    • /
    • 2008
  • The proposed system can achieve more safety of RFID system with the 2-step authentication procedures for the enhancement about the security of general RFID systems. After it has authenticated RFID tag, additionally, the proposed system extract the characteristic information in the user image for acquisition of the additional authentication information of the user with the camera. In this paper, the system which was proposed more enforce the security of the automatic entrance and exit authentication system with the cognitive characters of RFID tag and the extracted characteristic information of the user image through the camera. The RFID system which use the active tag and reader with 2.4GHz bandwidth can recognize the tag of RFID in the various output manner. Additionally, when the RFID system have errors. the characteristic information of the user image is designed to replace the RFID system as it compare with the similarity of the color, outline and input image information which was recorded to the database previously. In the experimental result, the system can acquire more exact results as compared with the single authentication system when it using RFID tag and the information of color characteristics.

  • PDF

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

Knowledge-based Video Retrieval System Using Korean Closed-caption (한국어 폐쇄자막을 이용한 지식기반 비디오 검색 시스템)

  • 조정원;정승도;최병욱
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.115-124
    • /
    • 2004
  • The content-based retrieval using low-level features can hardly provide the retrieval result that corresponds with conceptual demand of user for intelligent retrieval. Video includes not only moving picture data, but also audio or closed-caption data. Knowledge-based video retrieval is able to provide the retrieval result that corresponds with conceptual demand of user because of performing automatic indexing with such a variety data. In this paper, we present the knowledge-based video retrieval system using Korean closed-caption. The closed-caption is indexed by Korean keyword extraction system including the morphological analysis process. As a result, we are able to retrieve the video by using keyword from the indexing database. In the experiment, we have applied the proposed method to news video with closed-caption generated by Korean stenographic system, and have empirically confirmed that the proposed method provides the retrieval result that corresponds with more meaningful conceptual demand of user.

Verification of VIIRS Data using AIS data and automatic extraction of nigth lights (AIS 자료를 이용한 VIIRS 데이터의 야간 불빛 자동 추출 및 검증)

  • Suk Yoon;Hyeong-Tak Lee;Hey-Min Choi;;Jeong-Seok Lee;Hee-Jeong Han;Hyun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.104-105
    • /
    • 2023
  • 해양 관측과 위성 원격탐사를 이용하여 시공간적으로 다양하게 변하는 생태 어장 환경 및 선박 관련 자료를 획득할 수 있다. 이번 연구의 주요 목적은 야간 불빛 위성 자료를 이용하여 광범위한 해역에 대한 어선의 위치 분포를 파악하는 딥러닝 기반 모델을 제안하는 것이다. 제안한 모델의 정확성을 평가하기 위해 야간 조업 어선의 위치를 포함하고 있는 AIS(Automatic Identification System) 정보와 상호 비교 평가 하였다. 이를 위해, 먼저 AIS 자료를 획득 및 분석하는 방법을 소개한다. 해양안전종합시스템(General Information Center on Maritime Safety & Security, GICOMS)으로부터 제공받은 AIS 자료는 동적정보와 정적정보로 나뉜다. 동적 정보는 일별 자료로 구분되어있으며, 이 정보에는 해상이동업무식별번호(Maritime Mobile Service Identity, MMSI), 선박의 시간, 위도, 경도, 속력(Speed over Ground, SOG), 실침로(Course over Ground, COG), 선수방향(Heading) 등이 포함되어 있다. 정적정보는 1개의 파일로 구성되어 있으며, 선박명, 선종 코드, IMO Number, 호출부호, 제원(DimA, DimB, DimC, Dim D), 홀수, 추정 톤수 등이 포함되어 있다. 이번 연구에서는 선박의 정보에서 어선의 정보를 추출하여 비교 자료로 사용하였으며, 위성 자료는 구름의 영향이 없는 깨끗한 날짜의 영상 자료를 선별하여 사용하였다. 야간 불빛 위성 자료, 구름 정보 등을 이용하여 야간 조업 어선의 불빛을 감지하는 심층신경망(Deep Neural Network; DNN) 기반 모델을 제안하였다. 본 연구의결과는 야간 어선의 분포를 감시하고 한반도 인근 어장을 보호하는데 기여할 것으로 기대된다.

  • PDF

Research on damage detection and assessment of civil engineering structures based on DeepLabV3+ deep learning model

  • Chengyan Song
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.443-457
    • /
    • 2024
  • At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.

Issues and Standardization technology in Automatic Extraction to Create an Planar Figure of Envelope based on BIM (BIM 기반 외피전개도 자동추출의 고려사항 및 표준화 연구)

  • Park, Young-Joon;Kim, Chang-Min;Park, Byung-Yoon;Choi, Chang-Ho
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.591-605
    • /
    • 2018
  • The information on the planar figure of the building envelope is commonly required in various criteria related to the energy performance of the building. However, since the method of creating varies depending on each criterion, the information displayed in the planar figure of the building envelope differs considerably according to the person making the figure. In this regard, this study sought to derive the commonly required information for the unification of the information included in the planar figure of the building envelope, and thus examine the standardization of the planar figure of the building envelope based on BIM. Towards this end, 1) the required information about the planar figure of the building envelope was derived through the literature review and case analysis results submitted to the energy performance evaluation agencies, and 2) the standardized output technology using IFC was investigated based on the required information. Therefore, it is expected that the findings of this study will help to create a general-purpose planar figure for the building envelope, and this study can serve as the preliminary research for automatically extracting the information on the planar figure of the building envelope.

Automatic Power Line Reconstruction from Multiple Drone Images Based on the Epipolarity

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.127-134
    • /
    • 2018
  • Electric transmission towers are facilities to transport electrical power from a plant to an electrical substation. The towers are connected using power lines that are installed with a proper sag by loosening the cable to lower the tension and to secure the sufficient clearance from the ground or nearby objects. The power line sag may extend over the tolerance due to the weather such as strong winds, temperature changes, and a heavy snowfall. Therefore the periodical mapping of the power lines is required but the poor accessibility to the power lines limit the work because most power lines are placed at the mountain area. In addition, the manual mapping of the power lines is also time-consuming either using the terrestrial surveying or the aerial surveying. Therefore we utilized multiple overlapping images acquired from a low-cost drone to automatically reconstruct the power lines in the object space. Two overlapping images are selected for epipolar image resampling, followed by the line extraction for the resampled images and the redundant images. The extracted lines from the epipolar images are matched together and reconstructed for the power lines primitive that are noisy because of the multiple line matches. They are filtered using the extracted line information from the redundant images for final power lines points. The experiment result showed that the proposed method successfully generated parabolic curves of power lines by interpolating the power lines points though the line extraction and reconstruction were not complete in some part due to the lack of the image contrast.

Development and Usability Testing of a User-Centered 3D Virtual Liver Surgery Planning System

  • Yang, Xiaopeng;Yu, Hee Chul;Choi, Younggeun;Yang, Jae Do;Cho, Baik Hwan;You, Heecheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • Objective: The present study developed a user-centered 3D virtual liver surgery planning (VLSP) system called Dr. Liver to provide preoperative information for safe and rational surgery. Background: Preoperative 3D VLSP is needed for patients' safety in liver surgery. Existing systems either do not provide functions specialized for liver surgery planning or do not provide functions for cross-check of the accuracy of analysis results. Method: Use scenarios of Dr. Liver were developed through literature review, benchmarking, and interviews with surgeons. User interfaces of Dr. Liver with various user-friendly features (e.g., context-sensitive hotkey menu and 3D view navigation box) was designed. Novel image processing algorithms (e.g., hybrid semi-automatic algorithm for liver extraction and customized region growing algorithm for vessel extraction) were developed for accurate and efficient liver surgery planning. Usability problems of a preliminary version of Dr. Liver were identified by surgeons and system developers and then design changes were made to resolve the identified usability problems. Results: A usability testing showed that the revised version of Dr. Liver achieved a high level of satisfaction ($6.1{\pm}0.8$ out of 7) and an acceptable time efficiency ($26.7{\pm}0.9 min$) in liver surgery planning. Conclusion: Involvement of usability testing in system development process from the beginning is useful to identify potential usability problems to improve for shortening system development period and cost. Application: The development and evaluation process of Dr. Liver in this study can be referred in designing a user-centered system.