• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.029 seconds

Automatic Image Registration Based on Extraction of Corresponding-Points for Multi-Sensor Image Fusion (다중센서 영상융합을 위한 대응점 추출에 기반한 자동 영상정합 기법)

  • Choi, Won-Chul;Jung, Jik-Han;Park, Dong-Jo;Choi, Byung-In;Choi, Sung-Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.524-531
    • /
    • 2009
  • In this paper, we propose an automatic image registration method for multi-sensor image fusion such as visible and infrared images. The registration is achieved by finding corresponding feature points in both input images. In general, the global statistical correlation is not guaranteed between multi-sensor images, which bring out difficulties on the image registration for multi-sensor images. To cope with this problem, mutual information is adopted to measure correspondence of features and to select faithful points. An update algorithm for projective transform is also proposed. Experimental results show that the proposed method provides robust and accurate registration results.

Automatic Extraction of Blood Flow Area in Brachial Artery for Suspicious Hypertension Patients from Color Doppler Sonography with Fuzzy C-Means Clustering

  • Kim, Kwang Baek;Song, Doo Heon;Yun, Sang-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.258-263
    • /
    • 2018
  • Color Doppler sonography is a useful tool for examining blood flow and related indices. However, it should be done by well-trained operator, that is, operator subjectivity exists. In this paper, we propose an automatic blood flow area extraction method from brachial artery that would be an essential building block of computer aided color Doppler analyzer. Specifically, our concern is to examine hypertension suspicious (prehypertension) patients who might develop their symptoms to established hypertension in the future. The proposed method uses fuzzy C-means clustering as quantization engine with careful seeding of the number of clusters from histogram analysis. The experiment verifies that the proposed method is feasible in that the successful extraction rates are 96% (successful in 48 out of 50 test cases) and demonstrated better performance than K-means based method in specificity and sensitivity analysis but the proposed method should be further refined as the retrospective analysis pointed out.

A PSRI Feature Extraction and Automatic Target Recognition Using a Cooperative Network and an MLP. (Cooperative network와 MLP를 이용한 PSRI 특징추출 및 자동표적인식)

  • 전준형;김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.198-207
    • /
    • 1996
  • A PSRI (position, scale, and rotation invariant ) feature extraction and automatic target recognition system using a cooperative network and an MLP is proposed. We can extract position invarient features by obtaining the target center using the projection and the moment in preprocessing stage. The scale and rotation invariant features are extracted from the contour projection of the number of edge pixels on each of the concentric circles, which is input to the cooperative network. By extracting the representative PSRI features form the features and their differentiations using max-net and min-net, we can rdduce the number of input neurons of the MLP, and make the resulted automatic target recognition system less sensitive to input variances. Experiments are conduted on various complex images which are shifted, rotated, or scaled, and the results show that the proposed system is very efficient for PSRI feature extractions and automatic target recognitions.

  • PDF

Feature Extraction Method for the Character Recognition of the Low Resolution Document

  • Kim, Dae-Hak;Cheong, Hyoung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.525-533
    • /
    • 2003
  • In this paper we introduce some existing preprocessing algorithm for character recognition and consider feature extraction method for the recognition of low resolution document. Image recognition of low resolution document including fax images can be frequently misclassified due to the blurring effect, slope effect, noise and so on. In order to overcome these difficulties in the character recognition we considered a mesh feature extraction and contour direction code feature. System for automatic character recognition were suggested.

  • PDF

Directional texture information for connecting road segments in high spatial resolution satellite images

  • Lee, Jong-Yeol
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.245-245
    • /
    • 2005
  • This paper addresses the use of directional textural information for connecting road segments. In urban scene, some roads are occluded by buildings, casting shadow of buildings, trees, and cars on streets. Automatic extraction of road network from remotely sensed high resolution imagery is generally hindered by them. The results of automatic road network extraction will be incomplete. To overcome this problem, several perceptual grouping algorithms are often used based on similarity, proximity, continuation, and symmetry. Roads have directions and are connected to adjacent roads with certain angles. The directional information is used to guide road fragments connection based on roads directional inertia or characteristics of road junctions. In the primitive stage, roads are extracted with textural and direction information automatically with certain length of linearity. The primitive road fragments are connected based on the directional information to improve the road network. Experimental results show some contribution of this approach for completing road network, specifically in urban area.

  • PDF

A Study on the Automatic Extraction of Fomulation and Properties in Chemical Field Patent Document by Using Machine Learning Technology (기계학습 기술을 활용한 화학분야 특허문서의 조성/물성 정보 자동추출 방법 연구)

  • Kim, Hongki;Lee, Hayoung;Park, Jinwoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.277-280
    • /
    • 2019
  • 본 논문에서는 화학분야 특허 문서에 존재하는 도표(TABLE) 데이터를 인공지능 기술을 활용하여 자동으로 추출하고 정형화된 형태로 가공하는 방법을 제안한다. 특허 문서에서 도표 데이터는 실시예에서 실험결과나 비교결과를 간결하고 가시적으로 표현하기 위하여 주로 사용되나, 셀의 속성을 정의하는 헤더부분과 수치가 표현되는 값 부분의 경계가 모호하여 구조화하는데 어려움이 있다. 본 논문에서 제안하는 방법은 소량의 학습데이터를 구축하고 기계학습을 통해 도표에 존재하는 셀의 속성을 예측하고, 예측된 속성을 토대로 조성과 물성 정보를 자동으로 구분하여 추출하는 방법을 제시한다. 제시된 방법을 활용하여 화학 분야 조성물 특허의 도표데이터에 시뮬레이션 결과 각 항목별 98.17%의 속성 예측 정확도를 나타내었으며 기존 규칙기반 연구보다 작업난이도, 예측정확도에서 우수한 성과를 보인다.

  • PDF

Automatic Extraction of Collocations based on Corpus using mutual information (말뭉치에 기반한 상호정보를 이용한 연어의 자동 추출)

  • Lee, Ho-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.461-468
    • /
    • 1994
  • This paper describes the automatic extraction of collocations based on corpus. The collocations are extracted from corpus using cooccurrence frequency and mutual information between words. In English, 5 types of collocations are defined. These collocations are transitive verb and object, intransitive verb and subject, adjective and noun, verb and adverb, and adverb and adjective. In this paper another type of collocation is recognized and extracted, which consists of verb and preposition. So 6 types of collocations are extracted based on corpus.

  • PDF

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

Design and application of effective data extraction technique from Web databases (웹 기반 데이터베이스로부터의 유용한 데이터 추출 기법의 설계 및 응용)

  • Hwang, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.309-314
    • /
    • 2005
  • This paper analyzes techniques that extract objective information from distributed web databases for bioinformatics based on relationship among information. Moreover, we discuss the design and implementation of a method for knowledge enhancement in respect of protein information. Web data extractor can be constructed by using a manual, semi-automatic, or automatic way. Data extractor generally makes use of identifiers in order to search and extract targeting information from a specified web page. This paper presents a design and implementation for the protein databases of an organism by utilizing web data extraction techniques.

  • PDF

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.